[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this article, thermal buckling and resonance frequency of a composite cylindrical nanoshell reinforced with graphene nanoplatelets (GNP) under bi-directional thermal loading are presented. The temperature-dependent material properties of piece-wise GNP-reinforced composites (GNPRC) are assumed to be graded in the thickness direction of a cylindrical nanoshell. Also, Halphin-Tsai nanomechanical model is used to surmise the effective material properties of each layer. The size-dependent GNPRC nanoshell is analyzed using modified couple stress parameter (FMCS). For the first time, in the presented study show that bi-directional thermal buckling occurs if the percent of relative frequency change tends to 30%. The novelty of the current study is in considering the effects of bi-directional thermal loading in addition of FMCS on relative frequency, resonance frequencies, thermal buckling, and dynamic deflection of the GNPRC nanoshell. The governing equations and boundary conditions are developed using Hamilton’s principle and solved with the aid of analytical method. The results show that, various bi-directionasl thermal loading and other geometrical and mechanical properties have important role on resonance frequency, relative frequency change, thermal buckling, and dynamic deflection of the GNPRC cylindrical nanoshell. The results of the current study are useful suggestions for design of materials science, micro-mechanical and nano-mechanical systems such as microactuators and microsensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhao X, Li D, Yang B, Ma C, Zhu Y, Chen H (2014) Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton. Appl Soft Comput 24:585–596

    Google Scholar 

  2. Wang M, Chen H (2020) Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl Soft Comput 88:105946

    Google Scholar 

  3. Zhao X, Zhang X, Cai Z, Tian X, Wang X, Huang Y, Chen H, Hu L (2019) Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients. Comput Biol Chem 78:481–490

    Google Scholar 

  4. Xu X, Chen H-L (2014) Adaptive computational chemotaxis based on field in bacterial foraging optimization. Soft Comput 18(4):797–807

    Google Scholar 

  5. Shen L, Chen H, Yu Z, Kang W, Zhang B, Li H, Yang B, Liu D (2016) Evolving support vector machines using fruit fly optimization for medical data classification. Knowl Based Syst 96:61–75

    Google Scholar 

  6. Wang M, Chen H, Yang B, Zhao X, Hu L, Cai Z, Huang H, Tong C (2017) Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 267:69–84

    Google Scholar 

  7. Xu Y, Chen H, Luo J, Zhang Q, Jiao S, Zhang X (2019) Enhanced Moth-flame optimizer with mutation strategy for global optimization. Inf Sci 492:181–203

    MathSciNet  Google Scholar 

  8. Chen H, Zhang Q, Luo J, Xu Y, Zhang X (2020) An enhanced Bacterial Foraging Optimization and its application for training kernel extreme learning machine. Appl Soft Comput 86:105884

    Google Scholar 

  9. Cao L, Tu C, Hu P, Liu S (2019) Influence of solid particle erosion (SPE) on safety and economy of steam turbines. Appl Therm Eng 150:552–563

    Google Scholar 

  10. Wang Y, Cao L, Hu P, Li B, Li Y (2019) Model establishment and performance evaluation of a modified regenerative system for a 660 MW supercritical unit running at the IPT-setting mode. Energy 179:890–915

    Google Scholar 

  11. Zhu B, Zhou X, Liu X, Wang H, He K, Wang P (2020) Exploring the risk spillover effects among China's pilot carbon markets: a regular vine copula-CoES approach. J Clean Prod 242:118455

    Google Scholar 

  12. Liu X, Zhou X, Zhu B, He K, Wang P (2019) Measuring the maturity of carbon market in China: an entropy-based TOPSIS approach. J Clean Prod 229:94–103

    Google Scholar 

  13. Zhu B, Ye S, Jiang M, Wang P, Wu Z, Xie R, Chevallier J, Wei Y-M (2019) Achieving the carbon intensity target of China: a least squares support vector machine with mixture kernel function approach. Appl Energy 233:196–207

    Google Scholar 

  14. Zhu B, Su B, Li Y (2018) Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08–2013/14. Appl Energy 230:1545–1556

    Google Scholar 

  15. Cao Y, Li Y, Zhang G, Jermsittiparsert K, Nasseri M (2020) An efficient terminal voltage control for PEMFC based on an improved version of whale optimization algorithm. Energy Rep 6:530–542

    Google Scholar 

  16. Liu Y-X, Yang C-N, Sun Q-D, Wu S-Y, Lin S-S, Chou Y-S (2019) Enhanced embedding capacity for the SMSD-based data-hiding method. Signal Process Image Commun 78:216–222

    Google Scholar 

  17. Quan Q, Hao Z, Xifeng H, Jingchun L (2020) Research on water temperature prediction based on improved support vector regression. Neural Comput Appl. https://doi.org/10.1007/s00521-020-04836-4

    Article  Google Scholar 

  18. Shi G, Araby S, Gibson CT, Meng Q, Zhu S, Ma J (2018) Graphene platelets and their polymer composites: fabrication, structure, properties, and applications. Adv Func Mater 28(19):1706705

    Google Scholar 

  19. Chen S, Hassanzadeh-Aghdam M, Ansari R (2018) An analytical model for elastic modulus calculation of SiC whisker-reinforced hybrid metal matrix nanocomposite containing SiC nanoparticles. J Alloy Compd 767:632–641

    Google Scholar 

  20. Zhang X, Zhang Y, Liu Z, Liu J (2020) Analysis of heat transfer and flow characteristics in typical cambered ducts. Int J Therm Sci 150:106226

    Google Scholar 

  21. Hu X, Ma P, Wang J, Tan G (2019) A hybrid cascaded DC–DC boost converter with ripple reduction and large conversion ratio. IEEE J Emerg Sel Topics Power Electron 8(1):761–770

    Google Scholar 

  22. Hu X, Ma P, Gao B, Zhang M (2019) An integrated step-up inverter without transformer and leakage current for grid-connected photovoltaic system. IEEE Trans Power Electron 34(10):9814–9827

    Google Scholar 

  23. Wu X, Huang B, Wang Q, Wang Y (2020) High energy density of two-dimensional MXene/NiCo-LDHs interstratification assembly electrode: Understanding the role of interlayer ions and hydration. Chem Eng J 380:122456

    Google Scholar 

  24. Guo L, Sriyakul T, Nojavan S, Jermsittiparsert K (2020) Risk-based traded demand response between consumers’ aggregator and retailer using downside risk constraints technique. IEEE Access 8:90957–90968

    Google Scholar 

  25. Cao B, Zhao J, Lv Z, Gu Y, Yang P, Halgamuge SK (2020) Multiobjective evolution of fuzzy rough neural network via distributed parallelism for stock prediction. IEEE Trans Fuzzy Syst 28(5):939–952

    Google Scholar 

  26. Wang G, Yao Y, Chen Z, Hu P (2019) Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology. Energy 166:256–266

    Google Scholar 

  27. Liu Y, Yang C, Sun Q (2020) Thresholds based image extraction schemes in big data environment in intelligent traffic management. IEEE Transact Intell Transport Syst. https://doi.org/10.1109/TITS.2020.2994386

    Article  Google Scholar 

  28. Liu J, Liu Y, Wang X (2019) An environmental assessment model of construction and demolition waste based on system dynamics: a case study in Guangzhou. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-07107-5

    Article  Google Scholar 

  29. Xu W, Qu S, Zhao L, Zhang H (2020) An improved adaptive sliding mode observer for a middle and high-speed rotors tracking. IEEE Transact Power Electron. https://doi.org/10.1109/TPEL.2020.3000785

    Article  Google Scholar 

  30. Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12):3884–3890

    Google Scholar 

  31. Yavari F, Rafiee M, Rafiee J, Yu Z-Z, Koratkar N (2010) Dramatic increase in fatigue life in hierarchical graphene composites. ACS Appl Mater Interfaces 2(10):2738–2743

    Google Scholar 

  32. Jafari M, Moradi G, Shirazi RS, Mirzavand R (2017) Design and implementation of a six-port junction based on substrate integrated waveguide. Turk J Electr Eng Comput Sci 25(3):2547–2553

    Google Scholar 

  33. Nadri S, Xie L, Jafari M, Bauwens MF, Arsenovic A, Weikle RM (2019) Measurement and extraction of parasitic parameters of quasi-vertical schottky diodes at submillimeter wavelengths. IEEE Microwave Wirel Compon Lett 29(7):474–476

    Google Scholar 

  34. Nadri S, Xie L, Jafari M, Alijabbari N, Cyberey ME, Barker NS, Lichtenberger AW, Weikle RM (2018) A 160 GHz frequency Quadrupler based on heterogeneous integration of GaAs Schottky diodes onto silicon using SU-8 for epitaxy transfer. In: 2018 IEEE/MTT-S international microwave symposium-IMS. IEEE, pp 769–772

  35. Weikle RM, Xie L, Nadri S, Jafari M, Moore CM, Alijabbari N, Cyberey ME, Barker NS, Lichtenberger AW, Brown CL (2019) Submillimeter-wave schottky diodes based on heterogeneous integration of GaAs onto silicon. In: 2019 United States national committee of URSI national radio science meeting (USNC-URSI NRSM), IEEE, pp 1–2

  36. Eyvazian A, Hamouda AM, Tarlochan F, Mohsenizadeh S, Dastjerdi AA (2019) Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core. Steel Compos Struct 33(6):891

    Google Scholar 

  37. Motezaker M, Eyvazian A (2020) Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs. Steel Compos Struct 34(2):289

    Google Scholar 

  38. Motezaker M, Eyvazian A (2020) Buckling load optimization of beam reinforced by nanoparticles. Struct Eng Mech 73(5):481–486

    Google Scholar 

  39. Derazkola HA, Eyvazian A, Simchi A (2020) Modeling and experimental validation of material flow during FSW of polycarbonate. Mater Today Commun 22:100796

    Google Scholar 

  40. Eyvazian A, Hamouda A, Tarlochan F, Derazkola HA, Khodabakhshi F (2020) Simulation and experimental study of underwater dissimilar friction-stir welding between aluminium and steel. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2020.02.003

    Article  Google Scholar 

  41. Eyvazian A, Habibi MK, Hamouda AM, Hedayati R (2014) Axial crushing behavior and energy absorption efficiency of corrugated tubes. Mater Des 1980–2015(54):1028–1038

    Google Scholar 

  42. Feng C, Kitipornchai S, Yang J (2017) Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Compos B Eng 110:132–140

    Google Scholar 

  43. Čanađija M, Barretta R, De Sciarra FM (2016) A gradient elasticity model of Bernoulli-Euler nanobeams in non-isothermal environments. Europ J Mech A/Solids 55:243–255

    MathSciNet  MATH  Google Scholar 

  44. Barretta R, Brčić M, Čanađija M, Luciano R, de Sciarra FM (2017) Application of gradient elasticity to armchair carbon nanotubes: Size effects and constitutive parameters assessment. Europ J Mech A/Solids 65:1–13

    MathSciNet  MATH  Google Scholar 

  45. Barretta R, Čanadija M, Feo L, Luciano R, de Sciarra FM, Penna R (2018) Exact solutions of inflected functionally graded nano-beams in integral elasticity. Compos B Eng 142:273–286

    Google Scholar 

  46. Qu S, Zhao L, Xiong Z (2020) Cross-layer congestion control of wireless sensor networks based on fuzzy sliding mode control. Neural Comput Appl. https://doi.org/10.1007/s00521-020-04758-1

    Article  Google Scholar 

  47. Zhang H, Qu S, Li H, Luo J, Xu W (2020) A moving shadow elimination method based on fusion of multi-feature. IEEE Access 8:63971–63982

    Google Scholar 

  48. Pang R, Xu B, Kong X, Zou D (2018) Seismic fragility for high CFRDs based on deformation and damage index through incremental dynamic analysis. Soil Dyn Earthq Eng 104:432–436

    Google Scholar 

  49. Pang R, Xu B, Zhou Y, Zhang X, Wang X (2020) Fragility analysis of high CFRDs subjected to mainshock-aftershock sequences based on plastic failure. Eng Struct 206:110152

    Google Scholar 

  50. Guo J, Zhang X, Gu F, Zhang H, Fan Y (2020) Does air pollution stimulate electric vehicle sales? Empirical evidence from twenty major cities in China. J Clean Prod 249:119372

    Google Scholar 

  51. Zeng H-B, Teo KL, He Y, Wang W (2019) Sampled-data-based dissipative control of TS fuzzy systems. Appl Math Model 65:415–427

    MathSciNet  MATH  Google Scholar 

  52. Gao N-S, Guo X-Y, Cheng B-Z, Zhang Y-N, Wei Z-Y, Hou H (2019) Elastic wave modulation in hollow metamaterial beam with acoustic black hole. IEEE Access 7:124141–124146

    Google Scholar 

  53. Chen H, Zhang G, Fan D, Fang L, Huang L (2020) Nonlinear lamb wave analysis for microdefect identification in mechanical structural health assessment. Measurement. https://doi.org/10.1016/j.measurement.2020.108026

    Article  Google Scholar 

  54. Gao N, Wei Z, Hou H, Krushynska AO (2019) Design and experimental investigation of V-folded beams with acoustic black hole indentations. J Acoust Soc Am 145(1):EL79–EL83

    Google Scholar 

  55. Song Q, Zhao H, Jia J, Yang L, Lv W, Gu Q, Shu X (2020) Effects of demineralization on the surface morphology, microcrystalline and thermal transformation characteristics of coal. J Anal Appl Pyrol 145:104716

    Google Scholar 

  56. Sahmani S, Aghdam M (2017) A nonlocal strain gradient hyperbolic shear deformable shell model for radial postbuckling analysis of functionally graded multilayer GPLRC nanoshells. Compos Struct 178:97–109

    Google Scholar 

  57. Sahmani S, Aghdam M (2017) Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory. Int J Mech Sci 131:95–106

    Google Scholar 

  58. Mirsalehi M, Azhari M, Amoushahi H (2017) Buckling and free vibration of the FGM thin micro-plate based on the modified strain gradient theory and the spline finite strip method. Europ J Mech A/Solids 61:1–13

    MathSciNet  MATH  Google Scholar 

  59. Song M, Kitipornchai S, Yang J (2017) Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Struct 159:579–588

    Google Scholar 

  60. Atanasov MS, Karličić D, Kozić P (2017) Forced transverse vibrations of an elastically connected nonlocal orthotropic double-nanoplate system subjected to an in-plane magnetic field. Acta Mech 228(6):2165–2185

    MathSciNet  MATH  Google Scholar 

  61. Du C, Li Y, Jin X (2014) Nonlinear forced vibration of functionally graded cylindrical thin shells. Thin Walled Struct 78:26–36

    Google Scholar 

  62. Li X, Qin Y, Li Y, Zhao X (2018) The coupled vibration characteristics of a spinning and axially moving composite thin-walled beam. Mech Adv Mater Struct 25(9):722–731

    Google Scholar 

  63. Barati MR (2018) A general nonlocal stress-strain gradient theory for forced vibration analysis of heterogeneous porous nanoplates. Europ J Mech A/Solids 67:215–230

    MathSciNet  MATH  Google Scholar 

  64. Chen D, Yang J, Kitipornchai S (2016) Free and forced vibrations of shear deformable functionally graded porous beams. Int J Mech Sci 108:14–22

    Google Scholar 

  65. Chen D, Kitipornchai S, Yang J (2016) Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin Walled Struct 107:39–48

    Google Scholar 

  66. Chen D, Yang J, Kitipornchai S (2017) Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos Sci Technol 142:235–245

    Google Scholar 

  67. Dong Y, Li Y, Chen D, Yang J (2018) Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Compos B Eng 145:1–13

    Google Scholar 

  68. Yang J, Chen D, Kitipornchai S (2018) Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Compos Struct 193:281–294

    Google Scholar 

  69. Chen D, Kitipornchai S, Yang J (2018) Dynamic response and energy absorption of functionally graded porous structures. Mater Des 140:473–487

    Google Scholar 

  70. Li X, Li Y, Qin Y (2016) Free vibration characteristics of a spinning composite thin-walled beam under hygrothermal environment. Int J Mech Sci 119:253–265

    Google Scholar 

  71. Li X, Du C, Li Y (2018) Parametric instability of a functionally graded cylindrical thin shell subjected to both axial disturbance and thermal environment. Thin Walled Struct 123:25–35

    Google Scholar 

  72. Li X, Du C, Li Y (2018) Parametric resonance of a FG cylindrical thin shell with periodic rotating angular speeds in thermal environment. Appl Math Model 59:393–409

    MathSciNet  MATH  Google Scholar 

  73. Du C, Li Y (2013) Nonlinear resonance behavior of functionally graded cylindrical shells in thermal environments. Compos Struct 102:164–174

    Google Scholar 

  74. Du C, Li Y (2014) Nonlinear internal resonance of functionally graded cylindrical shells using the Hamiltonian dynamics. Acta Mech Solida Sin 27(6):635–647

    Google Scholar 

  75. Moayedi H, Hayati S (2018) Modelling and optimization of ultimate bearing capacity of strip footing near a slope by soft computing methods. Appl Soft Comput J 66:208–219. https://doi.org/10.1016/j.asoc.2018.02.027

    Article  Google Scholar 

  76. Moayedi H, Hayati S (2018) Applicability of a CPT-based neural network solution in predicting load-settlement responses of bored pile. Int J Geomech. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001125

    Article  Google Scholar 

  77. Moayedi H, Aghel B, Abdullahi MM, Nguyen H, Safuan A, Rashid A (2019) Applications of rice husk ash as green and sustainable biomass. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.117851

    Article  Google Scholar 

  78. Moayedi H, Bui DT, Foong LK (2019) Slope stability monitoring using novel remote sensing based fuzzy logic. Sensors (Switzerland). https://doi.org/10.3390/s19214636

    Article  Google Scholar 

  79. Moayedi H, Bui DT, Gör M, Pradhan B, Jaafari A (2019) The feasibility of three prediction techniques of the artificial neural network, adaptive neuro-fuzzy inference system, and hybrid particle swarm optimization for assessing the safety factor of cohesive slopes. ISPRS Int J Geo Inf. https://doi.org/10.3390/ijgi8090391

    Article  Google Scholar 

  80. Moayedi H, Bui DT, Kalantar B, Osouli A, Gör M, Pradhan B, Nguyen H, Rashid ASA (2019) Harris hawks optimization: A novel swarm intelligence technique for spatial assessment of landslide susceptibility. Sensors (Switzerland). https://doi.org/10.3390/s19163590

    Article  Google Scholar 

  81. Moayedi H, Hayati S (2019) Artificial intelligence design charts for predicting friction capacity of driven pile in clay. Neural Comput Appl 31(11):7429–7445. https://doi.org/10.1007/s00521-018-3555-5

    Article  Google Scholar 

  82. Moayedi H, Mu’azu MA, Kok Foong L (2019) Swarm-based analysis through social behavior of grey wolf optimization and genetic programming to predict friction capacity of driven piles. Eng Comput. https://doi.org/10.1007/s00366-019-00885-z

    Article  Google Scholar 

  83. Moayedi H, Nguyen H, Kok Foong L (2019) Nonlinear evolutionary swarm intelligence of grasshopper optimization algorithm and gray wolf optimization for weight adjustment of neural network. Eng Comput. https://doi.org/10.1007/s00366-019-00882-2

    Article  Google Scholar 

  84. Moayedi H, Osouli A, Nguyen H, Rashid ASA (2019) A novel Harris hawks’ optimization and k-fold cross-validation predicting slope stability. Eng Comput. https://doi.org/10.1007/s00366-019-00828-8

    Article  Google Scholar 

  85. Moayedi H, Rezaei A (2019) An artificial neural network approach for under-reamed piles subjected to uplift forces in dry sand. Neural Comput Appl 31(2):327–336. https://doi.org/10.1007/s00521-017-2990-z

    Article  Google Scholar 

  86. Yuan C, Moayedi H (2019) The performance of six neural-evolutionary classification techniques combined with multi-layer perception in two-layered cohesive slope stability analysis and failure recognition. Eng Comput. https://doi.org/10.1007/s00366-019-00791-4

    Article  Google Scholar 

  87. Yuan C, Moayedi H (2019) Evaluation and comparison of the advanced metaheuristic and conventional machine learning methods for the prediction of landslide occurrence. Eng Comput. https://doi.org/10.1007/s00366-019-00798-x

    Article  Google Scholar 

  88. Moayedi H, Aghel B, Vaferi B, Foong LK, Bui DT (2020) The feasibility of Levenberg–Marquardt algorithm combined with imperialist competitive computational method predicting drag reduction in crude oil pipelines. J Petrol Sci Eng. https://doi.org/10.1016/j.petrol.2019.106634

    Article  Google Scholar 

  89. Moayedi H, Moatamediyan A, Nguyen H, Bui XN, Bui DT, Rashid ASA (2020) Prediction of ultimate bearing capacity through various novel evolutionary and neural network models. Eng Comput 36(2):671–687. https://doi.org/10.1007/s00366-019-00723-2

    Article  Google Scholar 

  90. Al-Furjan M, Safarpour H, Habibi M, Safarpour M, Tounsi A (2020) A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method. Eng Comput. https://doi.org/10.1007/s00366-020-01088-7

    Article  Google Scholar 

  91. Shi X, Li J, Habibi M (2020) On the statics and dynamics of an electro-thermo-mechanically porous GPLRC nanoshell conveying fluid flow. Mech Based Des Struct Mach 1–37

  92. Shamsaddini Lori E, Ebrahimi F, Elianddy Bin Supeni E, Habibi M, Safarpour H (2020) The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer. Eng Comput. https://doi.org/10.1007/s00366-020-01004-z

    Article  Google Scholar 

  93. Ghabussi A, Habibi M, NoormohammadiArani O, Shavalipour A, Moayedi H, Safarpour H (2020) Frequency characteristics of a viscoelastic graphene nanoplatelet–reinforced composite circular microplate. J Vib Control. https://doi.org/10.1177/1077546320923930

    Article  Google Scholar 

  94. Adamian A, Safari KH, Sheikholeslami M, Habibi M, Al-Furjan M, Chen G (2020) Critical temperature and frequency characteristics of GPLs-reinforced composite doubly curved panel. Appl Sci 10(9):3251

    Google Scholar 

  95. Shariati A, Ghabussi A, Habibi M, Safarpour H, Safarpour M, Tounsi A, Safa M (2020) Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation. Thin Walled Struct 154:106840

    Google Scholar 

  96. Shariati A, Habibi M, Tounsi A, Safarpour H, Safa M Application of exact continuum size‑dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties. https://doi.org/10.1007/s00366-020-01024-9

  97. Habibi M, Safarpour M, Safarpour H (2020) Vibrational characteristics of a FG-GPLRC viscoelastic thick annular plate using fourth-order Runge-Kutta and GDQ methods. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1779086

    Article  Google Scholar 

  98. Oyarhossein MA, Aa A, Habibi M, Makkiabadi M, Daman M, Safarpour H, Jung DW (2020) Dynamic response of the nonlocal strain-stress gradient in laminated polymer composites microtubes. Sci Rep 10(1):5616. https://doi.org/10.1038/s41598-020-61855-w

    Article  Google Scholar 

  99. Moayedi H, Ebrahimi F, Habibi M, Safarpour H, Foong LK (2020) Application of nonlocal strain–stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell. Eng Comput. https://doi.org/10.1007/s00366-020-01002-1

    Article  Google Scholar 

  100. Cheshmeh E, Karbon M, Eyvazian A, Jung D, Tran T, Habibi M, Safarpour M (2020) Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher-order shear deformation theory. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1744005

    Article  Google Scholar 

  101. Moayedi H, Aliakbarlou H, Jebeli M, Noormohammadi Arani O, Habibi M, Safarpour H, Foong L (2020) Thermal buckling responses of a graphene reinforced composite micropanel structure. Int J Appl Mech. https://doi.org/10.1142/S1758825120500106

    Article  Google Scholar 

  102. Ebrahimi F, Supeni EEB, Habibi M, Safarpour H (2020) Frequency characteristics of a GPL-reinforced composite microdisk coupled with a piezoelectric layer. Europ Phys J Plus 135(2):144

    Google Scholar 

  103. Najaafi N, Jamali M, Habibi M, Sadeghi S, Jung DW, Nabipour N (2020) Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1751297

    Article  Google Scholar 

  104. Sahmani S, Aghdam MM, Rabczuk T (2018) Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs. Compos Struct 198:51–62

    Google Scholar 

  105. Liu W, Zhang X, Li H, Chen J (2020) Investigation on the deformation and strength characteristics of rock salt under different confining pressures. Geotech Geol Eng. https://doi.org/10.1007/s10706-020-01388-1

    Article  Google Scholar 

  106. Fazaeli A, Habibi M, Ekrami A (2016) Experimental and finite element comparison of mechanical properties and formability of dual phase steel and ferrite-pearlite steel with the same chemical composition. Metall Eng 19(2):84–93

    Google Scholar 

  107. Ghazanfari A, Soleimani SS, Keshavarzzadeh M, Habibi M, Assempuor A, Hashemi R (2019) Prediction of FLD for sheet metal by considering through-thickness shear stresses. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1662310

    Article  Google Scholar 

  108. Habibi M, Mohammadi A, Safarpour H, Shavalipour A, Ghadiri M (2019) Wave propagation analysis of the laminated cylindrical nanoshell coupled with a piezoelectric actuator. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2019.1697932

    Article  Google Scholar 

  109. Habibi M, Payganeh G (2018) Experimental and finite element investigation of titanium tubes hot gas forming and production of square cross-section specimens.

  110. Shokrgozar A, Safarpour H, Habibi M (2020) Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator. Proc Inst Mech Eng Part C J Mech Eng Sci 234(2):512–529

    Google Scholar 

  111. Shariati A, Mohammad-Sedighi H, Żur KK, Habibi M, Safa M (2020) On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams. Materials 13(7):1707

    Google Scholar 

  112. Zhang X, Shamsodin M, Wang H, NoormohammadiArani O, Khan AM, Habibi M, Al-Furjan M, (2020) Dynamic information of the time-dependent tobullian biomolecular structure using a high-accuracy size-dependent theory. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1760939

    Article  Google Scholar 

  113. Shokrgozar A, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H (2020) Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1719509

    Article  Google Scholar 

  114. Moayedi H, Habibi M, Safarpour H, Safarpour M, Foong L (2019) Buckling and frequency responses of a graphen nanoplatelet reinforced composite microdisk. Int J Appl Mech. https://doi.org/10.1142/S1758825119501023

    Article  Google Scholar 

  115. Mahdi Alipour S, Mohammadi K, Mohammadi A, Habibi M, Safarpour H (2019) On dynamic of electro-elastic GNPRC cylindrical shell using modified length-couple stress parameter. Mech Based Des Struct Mach. https://doi.org/10.1142/S1758825120500660

    Article  Google Scholar 

  116. Shariati A, Mohammad-Sedighi H, Żur KK, Habibi M, Safa M (2020) Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters. Symmetry 12(4):586

    Google Scholar 

  117. Jermsittiparsert K, Ghabussi A, Forooghi A, Shavalipour A, Habibi M, won Jung D, Safa M (2020) Critical voltage, thermal buckling and frequency characteristics of a thermally affected GPL reinforced composite microdisk covered with piezoelectric actuator. Mech Based Des Struct Mach. https://doi.org/10.1080/15397734.2020.1748052

    Article  Google Scholar 

  118. Safarpour M, Ghabussi A, Ebrahimi F, Habibi M, Safarpour H (2020) Frequency characteristics of FG-GPLRC viscoelastic thick annular plate with the aid of GDQM. Thin Walled Struct 150:106683

    Google Scholar 

  119. Moayedi H, Darabi R, Ghabussi A, Habibi M, Foong LK (2020) Weld orientation effects on the formability of tailor welded thin steel sheets. Thin Walled Struct 149:106669

    Google Scholar 

  120. Safarpour M, Ebrahimi F, Habibi M, Safarpour H (2020) On the nonlinear dynamics of a multi-scale hybrid nanocomposite disk. Eng Comput. https://doi.org/10.1007/s00366-020-00949-5

    Article  Google Scholar 

  121. Ghayesh MH (2019) Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams. Compos Struct 225:110974

    Google Scholar 

  122. Ghayesh MH (2018) Dynamics of functionally graded viscoelastic microbeams. Int J Eng Sci 124:115–131

    MathSciNet  MATH  Google Scholar 

  123. Ghayesh MH (2019) Nonlinear oscillations of FG cantilevers. Appl Acoust 145:393–398

    Google Scholar 

  124. Ghayesh MH (2018) Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams. Appl Math Model 59:583–596

    MathSciNet  MATH  Google Scholar 

  125. Ghayesh MH (2019) Dynamical analysis of multilayered cantilevers. Commun Nonlinear Sci Numer Simul 71:244–253

    MathSciNet  MATH  Google Scholar 

  126. Ghayesh MH (2019) Asymmetric viscoelastic nonlinear vibrations of imperfect AFG beams. Appl Acoust 154:121–128

    Google Scholar 

  127. Tadi Beni Y, Mehralian F, Zeighampour H (2016) The modified couple stress functionally graded cylindrical thin shell formulation. Mech Adv Mater Struct 23(7):791–801

    MATH  Google Scholar 

  128. Ansari R, Gholami R, Rouhi H (2012) Vibration analysis of single-walled carbon nanotubes using different gradient elasticity theories. Compos B Eng 43(8):2985–2989

    Google Scholar 

  129. Wu H, Kitipornchai S, Yang J (2017) Thermal buckling and postbuckling of functionally graded graphene nanocomposite plates. Mater Des 132:430–441

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Li or Mostafa Habibi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The components of the matrices in Eq. (24):

$$K_{11} = \left\{ \begin{gathered} A_{11} ( - m^{2} ) - A_{66} \left( \frac{n}{R} \right)^{2} + \frac{{A_{77} l^{2} n^{2} }}{{4R^{2} }}( - m^{2} ) \hfill \\ + \left( { - \frac{{A_{77} l^{2} n^{4} }}{{4R^{4} }}} \right) - \frac{{A_{77} l^{2} n^{2} }}{{R^{4} }} \hfill \\ \end{gathered} \right\}$$
$$K_{12} = \left\{ \begin{gathered} \frac{{A_{12} n}}{R}(m) + \frac{{A_{66} n}}{R}(m) + \frac{{A_{77} l^{2} n}}{4R}( - m^{3} ) \hfill \\ + \left( {\frac{{A_{77} l^{2} ( - n - n^{3} )}}{{4R^{3} }}} \right)(m) \hfill \\ \end{gathered} \right\}$$
$$K_{13} = \left\{ {\frac{{A_{12} }}{R}(m) - \left( {\frac{{A_{77} l^{2} n^{2} }}{{2R^{3} }}} \right)(m)} \right\}$$
$$K_{14} = \left\{ \begin{gathered} B_{11} ( - m^{2} ) - B_{66} \frac{{n^{2} }}{{R^{2} }} + \frac{{B_{77} l^{2} n^{2} }}{{4R^{2} }}( - m^{2} ) \hfill \\ + \left( {\frac{{5A_{77} l^{2} n^{2} }}{{4R^{3} }} - \frac{{B_{77} l^{2} n^{4} }}{{4R^{4} }}} \right) \hfill \\ \end{gathered} \right\}$$
$$K_{15} = \left\{ \begin{gathered} \frac{{B_{12} n}}{R}(m) + \frac{{B_{66} n}}{R}(m) + \frac{{B_{77} l^{2} n}}{4R}( - m^{3} ) \hfill \\ - \left( {\frac{{(B_{77} )l^{2} n}}{{2R^{3} }} + \frac{{A_{77} l^{2} n}}{{4R^{2} }} - \frac{{B_{77} l^{2} n^{3} }}{{4R^{3} }}} \right)(m) \hfill \\ \end{gathered} \right\}$$
$$K_{21} = - \left\{ \begin{gathered} + \frac{{A_{12} n}}{R}( - m) + \frac{{A_{66} n}}{R}( - m) + \frac{{A_{77} l^{2} n}}{4R}(m^{3} ) \hfill \\ + \left( {\frac{{A_{77} l^{2} ( - n - n^{3} )}}{{4R^{3} }}} \right)( - m) \hfill \\ \end{gathered} \right\}$$
$$K_{22} = \left\{ \begin{gathered} A_{66} \sum\limits_{k = 1}^{i} {( - m^{2} )} - A_{11} \left( \frac{n}{R} \right)^{2} - \frac{{k_{s} A_{66} }}{{R^{2} }} - \frac{{A_{77} l^{2} }}{4}(m^{4} ) \hfill \\ + \left( {\frac{{A_{77} l^{2} (2 + n^{2} )}}{{4R^{2} }}} \right)( - m^{2} ) \hfill \\ + \left( { - \frac{{A_{77} l^{2} (1 + n^{2} )}}{{4R^{4} }}} \right) - N_{h} \frac{n}{{R^{2} }} \hfill \\ \end{gathered} \right\}$$
$$K_{23} = \left\{ \begin{gathered} - A_{11} \frac{n}{{R^{2} }} - k_{s} A_{66} \frac{n}{{R^{2} }} + \left( {\frac{{A_{66} l^{2} n}}{{4R^{2} }}} \right)( - m^{2} ) \hfill \\ + \left( { - \frac{{A_{566} l^{2} (n^{3} + n)}}{{4R^{4} }}} \right) \hfill \\ \end{gathered} \right\}$$
$$K_{24} = \left\{ \begin{gathered} - \frac{{B_{66} n}}{R}( - m) - \frac{{B_{12} n}}{R}( - m) - \frac{{B_{77} l^{2} n}}{4R}(m^{3} ) \hfill \\ - \left( {\frac{{A_{77} l^{2} n}}{{2R^{2} }} + \frac{{B_{77} l^{2} ( - n^{3} + n)}}{{4R^{3} }}} \right)( - m) \hfill \\ \end{gathered} \right\}$$
$$K_{25} = \left\{ \begin{gathered} B_{66} ( - m^{2} ) - B_{11} \left( \frac{n}{R} \right)^{2} + \frac{{k_{s} A_{55} }}{R} - \frac{{B_{77} l^{2} }}{4}(m^{4} ) \hfill \\ - \left( {\frac{{ - 3A_{77} l^{2} }}{4R} - \frac{{B_{77} l^{2} }}{2R} - \frac{{B_{77} l^{2} (n^{2} - 1)}}{{4R^{2} }}} \right)( - m^{2} ) \hfill \\ + \left( {\frac{{A_{77} l^{2} (1 - n^{2} )}}{{4R^{3} }}} \right) \hfill \\ \end{gathered} \right\}$$
$$K_{31} = - \left\{ { + \frac{{A_{12} }}{R}( - m) - \left( {\frac{{A_{77} l^{2} n^{2} }}{{2R^{3} }}} \right)( - m)} \right\}$$
$$K_{32} = \left\{ \begin{gathered} - A_{11} \frac{n}{{R^{2} }} - k_{s} A_{66} \frac{n}{{R^{2} }} + \left( {\frac{{A_{77} l^{2} n}}{{4R^{2} }}} \right)( - m^{2} ) \hfill \\ + \left( { - \frac{{A_{77} l^{2} (n^{3} + n)}}{{4R^{4} }}} \right) \hfill \\ \end{gathered} \right\}$$
$$K_{33} = \left\{ \begin{gathered} k_{s} A_{55} ( - m^{2} ) - k_{s} A_{66} \left( \frac{n}{R} \right)^{2} - \frac{{A_{11} }}{{R^{2} }} - \frac{{A_{77} l^{2} }}{4}(m^{4} ) + \hfill \\ \left( {\frac{{A_{77} l^{2} (2n^{2} + 1)}}{{4R^{2} }}} \right)( - m^{2} ) \hfill \\ \left( { - \frac{{A_{77} l^{2} (n^{2} + n^{4} )}}{{4R^{4} }}} \right) - N_{h} \frac{{n^{2} }}{{R^{2} }} \hfill \\ \end{gathered} \right\}$$
$$K_{34} = \left\{ \begin{gathered} k_{s} A_{66} ( - m) - \frac{{B_{12} }}{R}( - m) + \frac{{A_{77} l^{2} }}{4}(m^{3} ) \hfill \\ - \left( {\frac{{A_{77} l^{2} (n^{2} + 1)}}{{4R^{2} }}} \right)( - m) \hfill \\ \end{gathered} \right\}$$
$$K_{35} = \left\{ \begin{gathered} \frac{{k_{s} A_{55} n}}{R} - \frac{{B_{11} n}}{{R^{2} }} + \left( {\frac{{B_{77} l^{2} n}}{{2R^{2} }} - \frac{{A_{77} l^{2} n}}{4R}} \right)( - m^{2} ) \hfill \\ + \left( {\frac{{A_{77} l^{2} (n - n^{3} )}}{{4R^{3} }}} \right) \hfill \\ \end{gathered} \right\}$$
$$K_{41} = \left\{ \begin{gathered} + B_{11} ( - m^{2} ) - B_{66} \frac{{n^{2} }}{{R^{2} }} + \frac{{B_{77} l^{2} n^{2} }}{{4R^{2} }}( - m^{2} ) \hfill \\ + \left( {\frac{{5A_{77} l^{2} n^{2} }}{{4R^{3} }} - \frac{{B_{77} l^{2} n^{4} }}{{4R^{4} }}} \right) \hfill \\ \end{gathered} \right\}$$
$$K_{42} = - \left\{ \begin{gathered} - \frac{{B_{66} n}}{R}(m) - \frac{{B_{12} n}}{R}(m) - \frac{{B_{77} l^{2} n}}{4R}( - m^{3} ) \hfill \\ - \left( {\frac{{A_{77} l^{2} n}}{{2R^{2} }} + \frac{{B_{77} l^{2} ( - n^{3} + n)}}{{4R^{3} }}} \right)(m) \hfill \\ \end{gathered} \right\}$$
$$K_{43} = - \left\{ \begin{gathered} k_{s} A_{66} (m) - \frac{{B_{12} }}{R}(m) + \frac{{A_{77} l^{2} }}{4}( - m^{3} ) \hfill \\ - \left( {\frac{{A_{77} l^{2} (n^{2} + 1)}}{{4R^{2} }}} \right)(m) \hfill \\ \end{gathered} \right\}$$
$$K_{44} = \left\{ \begin{gathered} - D_{66} \left( \frac{n}{R} \right)^{2} - k_{s} A_{66} + \left( {\frac{{D_{77} l^{2} n^{2} }}{{4R^{2} }} + \frac{{A_{77} l^{2} }}{4}} \right)( - m^{2} ) \hfill \\ + \left( { - \frac{{D_{77} l^{2} n^{4} }}{{4R^{4} }} + \frac{{2B_{77} l^{2} n^{2} }}{{4R^{3} }} - \frac{{A_{77} l^{2} (1 + 4n^{2} )}}{{4R^{2} }}} \right)D_{11} ( - m^{2} ) \hfill \\ \end{gathered} \right\}$$
$$K_{45} = \left\{ \begin{gathered} \frac{{D_{12} n}}{R}(m) + D_{66} \frac{n}{R}(m) + \frac{{D_{77} l^{2} n}}{4R}( - m^{3} ) \hfill \\ + \left( { - \frac{{D_{77} l^{2} n^{3} }}{{4R^{3} }} + \frac{{B_{77} l^{2} n}}{2R} - \frac{{3A_{77} l^{2} n}}{4R}} \right)(m) \hfill \\ \end{gathered} \right\}$$
$$K_{51} = \left\{ \begin{gathered} + \frac{{B_{12} n}}{R}( - m) + \frac{{B_{66} n}}{R}( - m) + \frac{{B_{77} l^{2} n}}{4R}\sum\limits_{k = 1}^{i} {C_{i,k}^{\left( 3 \right)} } \hfill \\ - \left( {\frac{{(B_{77} )l^{2} n}}{{2R^{3} }} + \frac{{A_{77} l^{2} n}}{{4R^{2} }} - \frac{{B_{77} l^{2} n^{3} }}{{4R^{3} }}} \right)( - m) \hfill \\ \end{gathered} \right\}$$
$$K_{52} = \left\{ \begin{gathered} B_{66} ( - m^{2} ) - B_{11} (\frac{n}{R})^{2} + \frac{{k_{s} A_{66} }}{R} - \frac{{B_{77} l^{2} }}{4}(m^{4} ) \hfill \\ - \left( {\frac{{ - 3A_{77} l^{2} }}{4R} - \frac{{B_{77} l^{2} }}{2R} - \frac{{B_{77} l^{2} (n^{2} - 1)}}{{4R^{2} }}} \right)( - m^{2} ) \hfill \\ + \left( {\frac{{A_{77} l^{2} (1 - n^{2} )}}{{4R^{3} }}} \right) \hfill \\ \end{gathered} \right\}$$
$$K_{53} = \left\{ \begin{gathered} \frac{{k_{s} A_{77} n}}{R} - \frac{{B_{11} n}}{{R^{2} }} + \left( {\frac{{B_{77} l^{2} n}}{{2R^{2} }} - \frac{{A_{77} l^{2} n}}{4R}} \right)( - m^{2} ) \hfill \\ + \left( {\frac{{A_{77} l^{2} (n - n^{3} )}}{{4R^{3} }}} \right) \hfill \\ \end{gathered} \right\}$$
$$K_{54} = - \left\{ \begin{gathered} + \frac{{D_{12} n}}{R}( - m) + D_{66} \frac{n}{R}( - m) + \frac{{D_{77} l^{2} n}}{4R}(m^{3} ) \hfill \\ + \left( { - \frac{{D_{77} l^{2} n^{3} }}{{4R^{3} }} + \frac{{B_{77} l^{2} n}}{2R} - \frac{{3A_{77} l^{2} n}}{4R}} \right)( - m) \hfill \\ \end{gathered} \right\}$$
$$K_{55} = \left\{ \begin{gathered} - D_{11} (\frac{n}{R})^{2} + D_{66} ( - m^{2} ) - k_{s} A_{55} - \frac{{D_{77} l^{2} }}{4}(m^{4} ) \hfill \\ + \left( {\frac{{D_{77} l^{2} n^{2} }}{{4R^{2} }} + \frac{{B_{77} l^{2} }}{2R} + A_{77} l^{2} + \frac{{D_{77} l^{2} }}{2R}} \right)( - m^{2} ) \hfill \\ + \left( { - \frac{{A_{77} l^{2} n^{2} }}{{4R^{2} }} - \frac{{A_{77} l^{2} }}{{4R^{2} }}} \right) \hfill \\ \end{gathered} \right\}$$
$$\begin{gathered} M_{11} = I_{0} ,M_{14} = I_{1} ,M_{22} = I_{0} ,M_{25} = I_{1} ,M_{33} = I_{0} ,M_{41} = I_{1} ,\,M_{44} = I_{2} ,\,M_{52} = I_{1} ,\,M_{55} = I_{2} \hfill \\ \,M_{12} = M_{13} = M_{15} = M_{21} = M_{23} = M_{24} = M_{31} = M_{32} = M_{34} = M_{35} = M_{42} = M_{43} = M_{45} = \,M_{51} = M_{53} = M_{54} = 0\, \hfill \\ \end{gathered}$$

Appendix B

$$B_{1} = \frac{1}{\Delta F}\left| {\begin{array}{*{20}c} {T_{i} } & {K_{o} \left( {q\left( {r_{i} } \right)} \right)} \\ {T_{o} } & {K_{o} \left( {q\left( {r_{o} } \right)} \right)} \\ \end{array} } \right| \, C_{1} = \frac{1}{\Delta F}\left| {\begin{array}{*{20}c} {I_{o} \left( {q\left( {r_{i} } \right)} \right)} & {T_{i} } \\ {I_{o} \left( {q\left( {r_{o} } \right)} \right)} & {T_{o} } \\ \end{array} } \right| \, \Delta F = \left| {\begin{array}{*{20}c} {I_{o} \left( {q\left( {r_{i} } \right)} \right)} & {K_{o} \left( {q\left( {r_{i} } \right)} \right)} \\ {I_{o} \left( {q\left( {r_{o} } \right)} \right)} & {K_{o} \left( {q\left( {r_{o} } \right)} \right)} \\ \end{array} } \right|$$

2.1 FG-V:

$${\text{A}}_{1} = 1 - \frac{{2D_{z} r_{i} }}{h},{\text{ A}}_{2} = \frac{{2D_{z} }}{h},{\text{ A}}_{3} = P_{m}^{2} \left( {\frac{{2D_{x} r_{i} }}{h} - 1} \right),{\text{ A}}_{4} = - 2P_{m}^{2} \frac{{D_{x} }}{h}, \, \frac{{k_{i} }}{{k_{m} }} = 1 + 2D_{i} \left( {\frac{{z - r_{i} }}{h}} \right)$$

2.2 FG-X:

$$\begin{gathered} {\text{when: z }}\langle {\text{ r}}_{i} { + }\frac{h}{2} \hfill \\ {\text{A}}_{1} = 1 + 2D_{z} \left( {1 + \frac{{2r_{i} }}{h}} \right),{\text{ A}}_{2} = - \frac{{4D_{z} }}{h},{\text{ A}}_{3} = - P_{m}^{2} \left( {1 + 2D_{x} \left( {1 + \frac{{2r_{i} }}{h}} \right)} \right),{\text{ A}}_{4} = 4P_{m}^{2} \frac{{D_{x} }}{h} \hfill \\ \frac{{k_{i} }}{{k_{m} }} = 1 + 2D_{i} \left( {1 - \frac{{2\left( {z - r_{i} } \right)}}{h}} \right) \hfill \\ {\text{when: z }}\rangle {\text{ r}}_{i} { + }\frac{h}{2} \hfill \\ {\text{A}}_{1} = 1 - 2D_{z} \left( {1 + \frac{{2r_{o} }}{h}} \right),{\text{ A}}_{2} = \frac{{4D_{z} }}{h},{\text{ A}}_{3} = - P_{m}^{2} \left( {1 - 2D_{x} \left( {1 + \frac{{2r_{o} }}{h}} \right)} \right),{\text{ A}}_{4} = - 4P_{m}^{2} \frac{{D_{x} }}{h} \hfill \\ \frac{{k_{i} }}{{k_{m} }} = 1 + 2D_{i} \left( { - 1 + \frac{{2\left( {z - r_{i} } \right)}}{h}} \right) \hfill \\ \end{gathered}$$

2.3 FG-O:

$$\begin{gathered} {\text{when: z}}\langle {\text{ r}}_{i} { + }\frac{h}{2} \hfill \\ {\text{A}}_{1} = 1 - \frac{{4D_{z} r_{i} }}{h},{\text{ A}}_{2} = \frac{{4D_{z} }}{h},{\text{ A}}_{3} = P_{m}^{2} \left( {\frac{{4D_{x} r_{i} }}{h} - 1} \right),{\text{ A}}_{4} = - 4P_{m}^{2} \frac{{D_{x} }}{h} \hfill \\ \frac{{k_{i} }}{{k_{m} }} = 1 + 4D_{i} \left( {\frac{{z - r_{i} }}{h}} \right) \hfill \\ {\text{when: z }}\rangle {\text{ r}}_{i} { + }\frac{h}{2} \hfill \\ {\text{A}}_{1} = 1 + \frac{{4D_{z} r_{o} }}{h},{\text{ A}}_{2} = - \frac{{4D_{z} }}{h},{\text{ A}}_{3} = - P_{m}^{2} \left( {\frac{{4D_{x} r_{o} }}{h} + 1} \right),{\text{ A}}_{4} = 4P_{m}^{2} \frac{{D_{x} }}{h} \hfill \\ \frac{{k_{i} }}{{k_{m} }} = 1 + 4D_{i} \left( {\frac{{r_{o} - z}}{h}} \right) \hfill \\ \end{gathered}$$
$$\begin{gathered} B_{2} = \frac{1}{{\int_{{r_{i} }}^{{r_{o} }} {\frac{{e^{{2\sqrt { - \, \frac{{A_{4} }}{{A_{2} }}} {\text{ z}}}} }}{{z\left( {A_{2} z + A_{1} } \right)H_{z}^{2} }}dz} }} \times \left\{ {\frac{{T_{o} }}{{H_{o} \times e^{{ - \sqrt { - \, \frac{{A_{4} }}{{A_{2} }}} \, r_{o} }} }} - \frac{{T_{i} }}{{H_{i} \times e^{{ - \sqrt { - \, \frac{{A_{4} }}{{A_{2} }}} {\text{ r}}_{i} }} }}} \right\} \hfill \\ C_{2} = \frac{{T_{i} }}{{HeunC\left( {\frac{{2A_{1} }}{{A_{2} }}\sqrt { - \frac{{A_{4} }}{{A_{2} }}} ,0,0,\frac{{A_{1} }}{{A_{2}^{3} }}\left( {A_{1} A_{4} - A_{2} A_{3} } \right),0, - \frac{{A_{2} }}{{A_{1} }}r_{i} } \right) \times e^{{ - \sqrt { - \, \frac{{A_{4} }}{{A_{2} }}} \, r_{i} }} }} \hfill \\ \end{gathered}$$
$$\begin{gathered} H_{z} = HeunC\left( {\frac{{2A_{1} }}{{A_{2} }}\sqrt { - \frac{{A_{4} }}{{A_{2} }}} ,0,0,\frac{{A_{1} }}{{A_{2}^{3} }}\left( {A_{1} A_{4} - A_{2} A_{3} } \right),0, - \frac{{A_{2} }}{{A_{1} }}z} \right) \hfill \\ H_{o} = HeunC\left( {\frac{{2A_{1} }}{{A_{2} }}\sqrt { - \frac{{A_{4} }}{{A_{2} }}} ,0,0,\frac{{A_{1} }}{{A_{2}^{3} }}\left( {A_{1} A_{4} - A_{2} A_{3} } \right),0, - \frac{{A_{2} }}{{A_{1} }}r_{o} } \right) \hfill \\ H_{i} = HeunC\left( {\frac{{2A_{1} }}{{A_{2} }}\sqrt { - \frac{{A_{4} }}{{A_{2} }}} ,0,0,\frac{{A_{1} }}{{A_{2}^{3} }}\left( {A_{1} A_{4} - A_{2} A_{3} } \right),0, - \frac{{A_{2} }}{{A_{1} }}r_{i} } \right) \hfill \\ \end{gathered}$$
$$\begin{gathered} B_{3} = \frac{1}{\Delta A}\left| {\begin{array}{*{20}c} {T_{2} } & {K_{o} \left( {m_{a} z} \right)} \\ {T_{ai} } & {K_{o} \left( {m_{a} \left( {r_{o} - h_{p} } \right)} \right)} \\ \end{array} } \right| \, C_{3} = \frac{1}{\Delta A}\left| {\begin{array}{*{20}c} {I_{o} \left( {m_{a} z} \right)} & {T_{2} } \\ {I_{o} \left( {m_{a} \left( {r_{o} - h_{p} } \right)} \right)} & {T_{ai} } \\ \end{array} } \right| \hfill \\ \Delta A = \left| {\begin{array}{*{20}c} {I_{o} \left( {m_{a} z} \right)} & {K_{o} \left( {m_{a} z} \right)} \\ {I_{o} \left( {m_{a} \left( {r_{o} - h_{p} } \right)} \right)} & {K_{o} \left( {m_{a} \left( {r_{o} - h_{p} } \right)} \right)} \\ \end{array} } \right| \hfill \\ Where{\text{ T}}_{ai} = \left. {T_{a} } \right|_{{z = r_{o} - h_{p} }} \hfill \\ \end{gathered}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Tang, F. & Habibi, M. Bi-directional thermal buckling and resonance frequency characteristics of a GNP-reinforced composite nanostructure. Engineering with Computers 38, 1559–1580 (2022). https://doi.org/10.1007/s00366-020-01110-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01110-y

Keywords

Navigation