[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A novel intelligent approach to simulate the blast-induced flyrock based on RFNN combined with PSO

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This research focuses to propose a new hybrid approach which combined the recurrent fuzzy neural network (RFNN) with particle swarm optimization (PSO) algorithm to simulate the flyrock distance induced by mine blasting. Here, this combination is abbreviated using RFNN–PSO. To evaluate the acceptability of RFNN–PSO model, adaptive neuro-fuzzy inference system (ANFIS) and non-linear regression models were also used. To achieve the objective of this research, 72 sets of data were collected from Shur river dam region, in Iran. Maximum charge per delay, stemming, burden, and spacing were considered as input parameters in the models. Then, the performance of the RFNN–PSO model was evaluated against ANFIS and non-linear regression models. Correlation coefficient (R2), Nash and Sutcliffe (NS), mean absolute bias error (MABE), and root-mean-squared error (RMSE) were used as comparing statistical indicators for the assessment of the developed approach’s performance. Results show a satisfactory achievement between the actual and predicted flyrcok values by RFNN–PSO with R2, NS, MABE, and RMSE being 0.933, 0.921, 13.86, and 15.79, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rezaei M, Monjezi M, Varjani AY (2011) Development of a fuzzy model to predict flyrock in surface mining. Saf Sci 49(2):298–305

    Article  Google Scholar 

  2. Khandelwal M, Monjezi M (2013) Prediction of flyrock in open pit blasting operation using machine learning method. Int J Min Sci Technol 23:313–316

    Article  Google Scholar 

  3. Jahed Armaghani D, Hajihassani M, Monjezi M, Mohamad ET, Marto A, Moghaddam MR (2015) Application of two intelligent systems in predicting environmental impacts of quarry blasting. Arab J Geosci. https://doi.org/10.1007/s12517-015-1908-2

    Article  Google Scholar 

  4. Hasanipanah M, Shirani Faradonbeh R, Jahed Armaghani D, Bakhshandeh Amnieh H, Khandelwal M (2017) Development of a precise model for prediction of blast-induced flyrock using regression tree technique. Environ Earth Sci 76:27

    Article  Google Scholar 

  5. Hasanipanah M, Armaghani DJ, Amnieh HB, Majid MZA, Tahir MMD (2017) Application of PSO to develop a powerful equation for prediction of flyrock due to blasting. Neural Comput Appl 28(1):1043–1050

    Article  Google Scholar 

  6. Hasanipanah M, Armaghani DJ, Amnieh HB, Koopialipoor M, Arab H (2018) A risk-based technique to analyze flyrock results through rock engineering system. Geotech Geol Eng 36:2247–2260

    Article  Google Scholar 

  7. Rad HN, Hasanipanah M, Rezaei M, Eghlim AL (2018) Developing a least squares support vector machine for estimating the blast-induced flyrock. Eng Comput 34(4):709–717

    Article  Google Scholar 

  8. Mohammadhassani M, Nezamabadi-pour H, Shariati M, Suhatril M (2013) Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams. Struct Eng Mech 46(6):853–868

    Article  Google Scholar 

  9. Toghroli A, Mohammadhassani M, Shariati M, Suhatril M, Ibrahim Z, Ramli Sulong NH (2014) Prediction of shear capacity of channel shear connectors using the ANFIS model. Steel Compos Struct J 17(5):623–639

    Article  Google Scholar 

  10. Mohammadhassani M, Nezamabadi-Pour H, Suhatril M, Shariati M (2014) An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups. Smart Struct Syst Int J 14(5):785–809

    Article  Google Scholar 

  11. Mansouri I et al (2016) Strength prediction of rotary brace damper using MLR and MARS. Struct Eng Mech 60(3):471–488

    Article  Google Scholar 

  12. Hasanipanah M, Noorian-Bidgoli M, Armaghani DJ, Khamesi H (2016) Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling. Eng Comput 32(4):705–715

    Article  Google Scholar 

  13. Toghroli A et al (2016) Potential of soft computing approach for evaluating the factors affecting the capacity of steel–concrete composite beam. J Intell Manuf. https://doi.org/10.1007/s10845-016-1217-y

    Article  Google Scholar 

  14. Safa M et al (2016) Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam’s shear strength. Steel Compos Struct 21(3):679–688

    Article  Google Scholar 

  15. Hasanipanah M et al (2016) Prediction of an environmental issue of mine blasting: an imperialistic competitive algorithm-based fuzzy system. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-017-1395-y

    Article  Google Scholar 

  16. Mansouri I et al (2017) Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique. J Intell Manuf. https://doi.org/10.1007/s10845-017-1306-6

    Article  Google Scholar 

  17. Behzadafshar K, Sarafraz ME, Hasanipanah M, Mojtahedi SFF, Tahir MM (2017) Proposing a new model to approximate the elasticity modulus of granite rock samples based on laboratory tests results. Bull Eng Geol Env. https://doi.org/10.1007/s10064-017-1210-5

    Article  Google Scholar 

  18. Azura Sari P et al (2018) An intelligent based-model role to simulate the factor of safe slope by support vector regression. Eng Comput. https://doi.org/10.1007/s00366-018-0677-4

    Article  Google Scholar 

  19. Sedghi Y et al (2018) Application of ANFIS technique on performance of C and L shaped angle shear connectors. Smart Struct Syst 22(3):335–340

    Google Scholar 

  20. Sadeghipour Chahnasir E et al (2018) Application of support vector machine with firefly algorithm for investigation of the factors affecting the shear strength of angle shear connectors. Smart Struct Syst 22(4):413–424

    Google Scholar 

  21. Mohamad ET, Armaghani DJ, Hasanipanah M, Murlidhar BR, Alel MNA (2016) Estimation of air-overpressure produced by blasting operation through a neuro-genetic technique. Environ Earth Sci 75(2):174

    Article  Google Scholar 

  22. Monjezi M, Mehrdanesh A, Malek A, Khandelwal M (2013) Evaluation of effect of blast design parameters on flyrock using artificial neural networks. Neural Comput Appl 23:349–356

    Article  Google Scholar 

  23. Amini H, Gholami R, Monjezi M, Torabi SR, Zadhesh J (2011) Evaluation of flyrock phenomenon due to blasting operation by support vector machine. Neural Comput Appl. https://doi.org/10.1007/s00521-011-0631-5

    Article  Google Scholar 

  24. Trivedi R, Singh TN, Gupta NI (2015) Prediction of blast induced flyrock in opencast mines using ANN and ANFIS. Geotech Geol Eng 33:875–891

    Article  Google Scholar 

  25. Amiri M, Bakhshandeh Amnieh H, Hasanipanah M, Mohammad Khanli L (2016) A new combination of artificial neural network and K-nearest neighbors models to predict blast induced ground vibration and air-overpressure. Eng Comput. https://doi.org/10.1007/s00366-016-0442-5

    Article  Google Scholar 

  26. Hasanipanah M, Shahnazar A, Arab H, Golzar SB, Amiri M (2017) Developing a new hybrid-AI model to predict blast induced backbreak. Eng Comput 33(3):349–359

    Article  Google Scholar 

  27. Keshtegar B, Hasanipanah M, Bakhshayeshi I, Sarafraz ME (2019) A novel nonlinear modeling for the prediction of blast induced airblast using a modified conjugate FR method. Measurement 131:35–41

    Article  Google Scholar 

  28. Monjezi M, Hasanipanah M, Khandelwal M (2013) Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network. Neural Comput Appl 22(7–8):1637–1643

    Article  Google Scholar 

  29. Hasanipanah M, Amnieh HB, Arab H, Zamzam MS (2018) Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting. Neural Comput Appl 30(4):1015–1024

    Article  Google Scholar 

  30. Aliev RA, Guirimov BG, Fazlollahi B, Aliev RR (2009) Evolutionary algorithm-based learning of fuzzy neural networks. Part 2: recurrent fuzzy neural networks. Fuzzy Sets Syst 160(17):2553–2566

    Article  MathSciNet  Google Scholar 

  31. Duong HN, Nguyen HT, Vaclav S, Sanghyuk L (2016) A comparative study of SWAT, RFNN and RFNN–GA for predicting river runoff. Indian J Sci Technol 9(17). https://doi.org/10.17485/ijst/2016/v9i17/92308

  32. Duong HN, Nguyen Q, Ta Bui L, Nguyen H, Snášel V (2014) Applying Recurrent fuzzy neural network to predict the runoff of Srepok River. In: IFIP international conference on computer information systems and industrial management CISIM: computer information systems and industrial management. CISIM 2015. Lecture Notes in Computer Science, vol 8838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45237-0_7

    Chapter  Google Scholar 

  33. Jahed Armaghani D, Tonnizam Mohamad E, Sundaram Narayanasamy M, Narita N, Yagiz S (2017) Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunn Undergr Space Technol 63:29–43

    Article  Google Scholar 

  34. Shahnazar A, Nikafshan Rad H, Hasanipanah M, Tahir MM, Jahed Armaghani D, Ghoroqi M (2017) A new developed approach for the prediction of ground vibration using a hybrid PSO-optimized ANFIS-based model. Environ Earth Sci 76(15):527

    Article  Google Scholar 

  35. Samui P, Kim D, Viswanathan R (2015) Spatial variability of rock depth using adaptive neuro-fuzzy inference system (ANFIS) and multivariate adaptive regression spline (MARS). Environ Earth Sci. https://doi.org/10.1007/s12665-014-3711-x

    Article  Google Scholar 

  36. Koçaslan A, Yüksek AG, Görgülü K, Arpaz E (2017) Evaluation of blast-induced ground vibrations in open-pit mines by using adaptive neuro-fuzzy inference systems. Environ Earth Sci 76:57

    Article  Google Scholar 

  37. Hasanipanah M, Armaghani DJ, Monjezi M, Shams S (2016) Risk assessment and prediction of rock fragmentation produced by blasting operation: a rock engineering system. Environ Earth Sci 75(9):808

    Article  Google Scholar 

  38. Jahed Armaghani D, Hasanipanah M, Bakhshandeh Amnieh H, Mohamad ET (2016) Feasibility of ICA in approximating ground vibration resulting from mine blasting. Neural Comput Appl. https://doi.org/10.1007/s00521-016-2577-0

    Article  Google Scholar 

  39. Taheri K, Hasanipanah M, Bagheri Golzar S, Abd Majid MZ (2016) A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration. Eng Comput 33(3):689–700

    Article  Google Scholar 

  40. Armaghani DJ, Hasanipanah M, Mohamad ET (2016) A combination of the ICA-ANN model to predict air-overpressure resulting from blasting. Eng Comput 32(1):155–171

    Article  Google Scholar 

  41. Hasanipanah M, Golzar SB, Larki IA, Maryaki MY, Ghahremanians T (2017) Estimation of blast-induced ground vibration through a soft computing framework. Eng Comput 33(4):951–959

    Article  Google Scholar 

  42. Hasanipanah M, Shirani Faradonbeh R, Bakhshandeh Amnieh H, Jahed Armaghani D, Monjezi M (2017) Forecasting blast induced ground vibration developing a CART model. Eng Comput 33(2):307–316

    Article  Google Scholar 

  43. Gao W, Karbasi M, Hasanipanah M, Zhang X, Guo J (2018) Developing GPR model for forecasting the rock fragmentation in surface mines. Eng Comput 34(2):339–345

    Article  Google Scholar 

  44. Faradonbeh RS, Hasanipanah M, Amnieh HB, Armaghani DJ, Monjezi M (2018) Development of GP and GEP models to estimate an environmental issue induced by blasting operation. Environ Monit Assess 190(6):351

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravindhan Surendar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaivaani, P.T., Akila, T., Tahir, M.M. et al. A novel intelligent approach to simulate the blast-induced flyrock based on RFNN combined with PSO. Engineering with Computers 36, 435–442 (2020). https://doi.org/10.1007/s00366-019-00707-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-019-00707-2

Keywords

Navigation