[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An improved pseudospectral meshless radial point interpolation (PSMRPI) method for 3D wave equation with variable coefficients

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, a pseudospectral meshless radial point interpolation (PSMRPI) technique is applied to the three-dimensional wave equation with variable coefficients subject to given appropriate initial and Dirichlet boundary conditions. The present method is a kind of combination of meshless methods and spectral collocation techniques. The point interpolation method along with the radial basis functions is used to construct the shape functions as the basis functions in the frame of the spectral collocation methods. These basis functions will have Kronecker delta function property, as well as unitary possession. In the proposed method, operational matrices of higher order derivatives are constructed and then applied. The merit of this innovative method is that, it does not require any kind of integration locally or globally over sub-domains, as it is essential in meshless methods based on Galerkin weak forms, such as element-free Galerkin and meshless local Petrov–Galerkin methods. Therefore, computational cost of PSMRPI method is low. Further, it is proved that the procedure is stable with respect to the time variable over some conditions on the 3D wave model, and the convergence of the technique is revealed. These latest claims are also shown in the numerical examples, which demonstrate that PSMRPI provides excellent rate of convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu G, Gu Y (2005) An introduction to meshfree methods and their programing. Springer, Berlin

    Google Scholar 

  2. Atluri S (2004) The meshless method (MLPG) for domain and BIE discretizations. Tech Science Press, New York

    MATH  Google Scholar 

  3. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229–256

    Article  MathSciNet  MATH  Google Scholar 

  4. Fili A, Naji A, Duan Y (2010) Coupling three-field formulation and meshless mixed Galerkin methods using radial basis functions. J Comput Appl Math 234(8):2456–2468

    Article  MathSciNet  MATH  Google Scholar 

  5. Peng M, Li D, Cheng Y (2011) The complex variable element-free Galerkin (CVEFG) method for elasto-plasticity problems. Eng Struct 33(1):127–135

    Article  Google Scholar 

  6. Dai B, Cheng Y (2010) An improved local boundary integral equation method for two-dimensional potential problems. Int J Appl Mech 2(2):421–436

    Article  Google Scholar 

  7. Bai F, Li D, Wang J, Cheng Y (2012) An improved complex variable element-free Galerkin method for two-dimensional elasticity problems. Chin Phys B 21(2):020204-1–020204-10

    Article  Google Scholar 

  8. Ilati M, Dehghan M (2018) Error analysis of a meshless weak form method based on radial point interpolation technique for sivashinsky equation arising in the alloy solidification problem. J Comput Appl Math 327:314–324

    Article  MathSciNet  MATH  Google Scholar 

  9. Dehghan M, Abbaszadeh M (2018) A reduced proper orthogonal decomposition (POD) element free Galerkin (POD-EFG) method to simulate two-dimensional solute transport problems and error estimate. Appl Numer Math 126:92–112

    Article  MathSciNet  MATH  Google Scholar 

  10. Dehghan M, Haghjoo-Saniji M (2017) The local radial point interpolation meshless method for solving Maxwell equations. Eng Comput 33(4):897–918

    Article  Google Scholar 

  11. Dehghan M, Abbaszadeh M, Mohebbi A (2016) The use of element free Galerkin method based on moving Kriging and radial point interpolation techniques for solving some types of turing models. Eng Anal Bound Elem 62:93–111

    Article  MathSciNet  MATH  Google Scholar 

  12. Dehghan M, Abbaszadeh M, Mohebbi A (2015) The use of interpolating element-free galerkin technique for solving 2D generalized Benjamin–Bona–Mahony–Burgers and regularized long-wave equations on non-rectangular domains with error estimate. J Comput Appl Math 286:211–231

    Article  MathSciNet  MATH  Google Scholar 

  13. Abbasbandy S, Ghehsareh HR, Alhuthali M, Alsulami H (2014) Comparison of meshless local weak and strong forms based on particular solutions for a non-classical 2-D diffusion model. Eng Anal Bound Elem 39:121–128

    Article  MathSciNet  MATH  Google Scholar 

  14. Fasshauer G E (2007) Meshfree approximation methods with MATLAB, vol 6. World Scientific, Singapore

    Book  MATH  Google Scholar 

  15. Kansa E (1990) Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics. I. Surface approximations and partial derivative estimates. Comput Math Appl 19(8–9):127–145

    Article  MathSciNet  MATH  Google Scholar 

  16. Jakobsson S, Andersson B, Edelvik F (2009) Rational radial basis function interpolation with applications to antenna design. J Comput Appl Math 233(4):889–904

    Article  MathSciNet  MATH  Google Scholar 

  17. Abbasbandy S, Ghehsareh HR, Hashim I (2013) A meshfree method for the solution of two-dimensional cubic nonlinear Schrödinger equation. Eng Anal Bound Elem 37(6):885–898

    Article  MathSciNet  MATH  Google Scholar 

  18. Abbasbandy S, Ghehsareh HR, Hashim I (2012) Numerical analysis of a mathematical model for capillary formation in tumor angiogenesis using a meshfree method based on the radial basis function. Eng Anal Bound Elem 36(12):1811–1818

    Article  MathSciNet  MATH  Google Scholar 

  19. Kamranian M, Dehghan M, Tatari M (2016) Study of the two-dimensional Sine-Gordon equation arising in Josephson junctions using meshless finite point method. Int J Numer Modell Electron Netw Devices Fields 30:e2210

    Article  Google Scholar 

  20. Shivanian E (2014) Analysis of meshless local and spectral meshless radial point interpolation (MLRPI and SMRPI) on 3-D nonlinear wave equations. Ocean Eng 89:173–188

    Article  Google Scholar 

  21. Shivanian E (2015) Meshless local Petrov–Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation. Eng Anal Bound Elem 50:249–257

    Article  MathSciNet  MATH  Google Scholar 

  22. Shivanian E, Khodabandehlo HR (2014) Meshless local radial point interpolation (MLRPI) on the telegraph equation with purely integral conditions. Eur Phys J Plus 129(11):241

    Article  Google Scholar 

  23. Shivanian E (2016) On the convergence analysis, stability, and implementation of meshless local radial point interpolation on a class of three-dimensional wave equations. Int J Numer Methods Eng 105(2):83–110

    Article  MathSciNet  MATH  Google Scholar 

  24. Shivanian E, Khodabandehlo HR (2016) Application of meshless local radial point interpolation (MLRPI) on a one-dimensional inverse heat conduction problem. Ain Shams Eng J 7(3):993–1000

    Article  Google Scholar 

  25. Shivanian E, Rahimi A, Hosseini M (2016) Meshless local radial point interpolation to three-dimensional wave equation with Neumann’s boundary conditions. Int J Comput Math 93(12):2124–2140

    Article  MathSciNet  MATH  Google Scholar 

  26. Shivanian E (2013) Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics. Eng Anal Bound Elem 37:1693–1702

    Article  MathSciNet  MATH  Google Scholar 

  27. Abbasbandy S, Shirzadi A (2010) A meshless method for two-dimensional diffusion equation with an integral condition. Eng Anal Bound Elem 34(12):1031–1037

    Article  MathSciNet  MATH  Google Scholar 

  28. Abbasbandy S, Shirzadi A (2011) MLPG method for two-dimensional diffusion equation with Neumann’s and non-classical boundary conditions. Appl Numer Math 61:170–180

    Article  MathSciNet  MATH  Google Scholar 

  29. Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional Sine–Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phys Commun 181:772–786

    Article  MathSciNet  MATH  Google Scholar 

  30. Hosseini VR, Shivanian E, Chen W (2015) Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation. Eur Phys J Plus 130(2):33

    Article  Google Scholar 

  31. Hosseini VR, Shivanian E, Chen W (2016) Local radial point interpolation (MLRPI) method for solving time fractional diffusion-wave equation with damping. J Comput Phys 312:307–332

    Article  MathSciNet  MATH  Google Scholar 

  32. Shivanian E, Khodayari A (2017) Meshless local radial point interpolation (MLRPI) for generalized telegraph and heat diffusion equation with non-local boundary conditions. J Theor Appl Mech 2017:55

    Google Scholar 

  33. Shivanian E (2016) Local integration of population dynamics via moving least squares approximation. Eng Comput 32(2):331–342

    Article  Google Scholar 

  34. Shivanian E, Abbasbandy S, Alhuthali MS, Alsulami HH (2015) Local integration of 2-D fractional telegraph equation via moving least squares approximation. Eng Anal Bound Elem 56:98–105

    Article  MathSciNet  MATH  Google Scholar 

  35. Fatahi H, Saberi-Nadjafi J, Shivanian E (2016) A new spectral meshless radial point interpolation (SMRPI) method for the two-dimensional Fredholm integral equations on general domains with error analysis. J Comput Appl Math 294:196–209

    Article  MathSciNet  MATH  Google Scholar 

  36. Shivanian E (2016) Spectral meshless radial point interpolation (SMRPI) method to two-dimensional fractional telegraph equation. Math Methods Appl Sci 39(7):1820–1835

    Article  MathSciNet  MATH  Google Scholar 

  37. Shivanian E, Jafarabadi A (2016) More accurate results for nonlinear generalized Benjamin–Bona–Mahony–Burgers (GBBMB) problem through spectral meshless radial point interpolation (SMRPI). Eng Anal Bound Elem 72:42–54

    Article  MathSciNet  MATH  Google Scholar 

  38. Shivanian E, Jafarabadi A (2017) Numerical solution of two-dimensional inverse force function in the wave equation with nonlocal boundary conditions. Inverse Probl Sci Eng 25(12):1743–1767

    Article  MathSciNet  MATH  Google Scholar 

  39. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318

    Article  MathSciNet  MATH  Google Scholar 

  40. Bratsos A (2008) An improved numerical scheme for the Sine–Gordon equation in 2+1 dimensions. Int J Numer Method Eng 75:787–799

    Article  MathSciNet  MATH  Google Scholar 

  41. Clear P (1998) Modeling conned multi-material heat and mass flows using SPH. Appl Math Model 22:981–993

    Article  Google Scholar 

  42. Liu W, Jun S, Zhang Y (1995) Reproducing kernel particle methods. Int J Numer Method Eng 20:1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  43. Mukherjee Y, Mukherjee S (1997) Boundary node method for potential problems. Int J Numer Method Eng 40:797–815

    Article  MathSciNet  MATH  Google Scholar 

  44. Melenk J, Babuska I (1996) The partition of unity finite element method: basic theory and applications. Comput Method Appl Mech Eng 139:289–314

    Article  MathSciNet  MATH  Google Scholar 

  45. De S, Bathe K (2000) The method of finite spheres. Comput Mech 25:329–345

    Article  MathSciNet  MATH  Google Scholar 

  46. Gu Y, Liu G (2002) A boundary point interpolation method for stress analysis of solids. Comput Mech 28:47–54

    Article  MATH  Google Scholar 

  47. Gu Y, Liu G (2003) A boundary radial point interpolation method (BRPIM) for 2-D structural analyses. Struct Eng Mech 15:535–550

    Article  Google Scholar 

  48. Liu G, Yan L, Wang J, Gu Y (2002) Point interpolation method based on local residual formulation using radial basis functions. Struct Eng Mech 14:713–732

    Article  Google Scholar 

  49. Liu G, Gu Y (2001) A local radial point interpolation method (LR-PIM) for free vibration analyses of 2-D solids. J Sound Vib 246(1):29–46

    Article  Google Scholar 

  50. Mazzia A, Ferronato M, Pini G, Gambolati G (2007) A comparison of numerical integration rules for the meshless local Petrov–Galerkin method. Numer Algorithms 45:61–74

    Article  MathSciNet  MATH  Google Scholar 

  51. Yu Y, Chen Z (2009) A 3-d radial point interpolation method for meshless time-domain modeling. IEEE Trans Microw Theory Technol 57(8):2015–2020

    Article  Google Scholar 

  52. Yang S, Yu Y, Chen ZD, Ponomarenko S (2014) A time-domain collocation meshless method with local radial basis functions for electromagnetic transient analysis. IEEE Trans Antennas Propag 62(10):5334–5338

    Article  MATH  Google Scholar 

  53. Shivanian E (2015) A new spectral meshless radial point interpolation (SMRPI) method: a well-behaved alternative to the meshless weak forms. Eng Anal Bound Elem 54:1–12

    Article  MathSciNet  MATH  Google Scholar 

  54. Shivanian E, Jafarabadi A (2017) Inverse cauchy problem of annulus domains in the framework of spectral meshless radial point interpolation. Eng Comput 33(3):431–442

    Article  MATH  Google Scholar 

  55. Shivanian E, Jafarabadi A (2017) An improved spectral meshless radial point interpolation for a class of time-dependent fractional integral equations: 2D fractional evolution equation. J Comput Appl Math 325:18–33

    Article  MathSciNet  MATH  Google Scholar 

  56. Shivanian E, Jafarabadi A (2018) Rayleigh-stokes problem for a heated generalized second grade fluid with fractional derivatives: a stable scheme based on spectral meshless radial point interpolation. Eng Comput 34(1):77–90

    Article  Google Scholar 

  57. Selvadurai A (2000) Partial differential equations in mechanics. Springer, Berlin

    Book  MATH  Google Scholar 

  58. Nettel S (2003) Wave physics: oscillations-solitons-chaos. Springer, Berlin

    Book  MATH  Google Scholar 

  59. Dehghan M (2006) Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math Comput Simul 71:16–30

    Article  MathSciNet  MATH  Google Scholar 

  60. Dehghan M (2005) On the solution of an initial-boundary value problem that combines Neumann and integral condition for the wave equation. Numer Method Partial Differ Equ 21:24–40

    Article  MathSciNet  MATH  Google Scholar 

  61. Dehghan M (2006) A computational study of the one-dimensional parabolic equation subject to nonclassical boundary specifications. Numer Method Partial Differ Equ 22:220–257

    Article  MathSciNet  MATH  Google Scholar 

  62. Mohanty R, Gopal V (2013) A new off-step high order approximation for the solution of three-space dimensional nonlinear wave equations. Appl Math Model 37:2802–2815

    Article  MathSciNet  MATH  Google Scholar 

  63. Liew K, Cheng R (2013) Numerical study of the three-dimensional wave equation using the mesh-free kp-Ritz method. Eng Anal Bound Elem 37:977–989

    Article  MathSciNet  MATH  Google Scholar 

  64. Wen P (2010) Meshless local Petrov–Galerkin (MLPG) method for wave propagation in 3D poroelastic solids. Eng Anal Bound Elem 34:315–323

    Article  MathSciNet  MATH  Google Scholar 

  65. Zhang Z, Li D, Cheng Y, Liew K (2012) The improved element-free Galerkin method for three-dimensional wave equation. Acta Mech Sin 28(3):808–818

    Article  MathSciNet  MATH  Google Scholar 

  66. Han Z, Atluri S (2004) A meshless local Petrov–Galerkin (MLPG) approach for 3-dimensional elasto-dynamics. Comput Mater Continua 1(2):129–140

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elyas Shivanian.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivanian, E., Shaban, M. An improved pseudospectral meshless radial point interpolation (PSMRPI) method for 3D wave equation with variable coefficients. Engineering with Computers 35, 1159–1171 (2019). https://doi.org/10.1007/s00366-018-0656-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-018-0656-9

Keywords

Navigation