[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Local meshless method for convection dominated steady and unsteady partial differential equations

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, we propose a mildly shock-capturing stabilized local meshless method (SLMM) for convection-dominated steady and unsteady PDEs. This work is extension of the numerical procedure, which was designed only for steady state convection-dominated PDEs (Siraj-ul-Islam and Singh in Int J Comput Methods 14(6):1750067, 2017). The proposed meshless methodology is based on employing different type of stencils embodying the already known flow direction. Numerical experiments are performed to compare the proposed method with the finite-difference method on special grid (FDSG) and other numerical methods. Numerical results confirm that the new approach is accurate and efficient for solving a wide class of one- and two- dimensional convection-dominated PDEs having sharp corners and jump discontinuities. Performance of the SLMM is found better in some cases and comparable in other cases, than the mesh-based numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Courtesy [4]

Fig. 5

Courtesy [4]

Fig. 6

Courtesy [4]

Fig. 7

Courtesy [4]

Fig. 8

Similar content being viewed by others

References

  1. Siraj-ul-Islam, Singh V (2017) A local meshless method for steady state convection dominated flows. Int J Comput Methods 14(6):1750067

    Article  MathSciNet  MATH  Google Scholar 

  2. Benkhaldoun F, Halassi A, Ouazar D, Seaid M, Taik A (2017) A stabilized meshless method for time-dependent convection-dominated flow problems. Math Comput Simul 137:159–176

    Article  MathSciNet  MATH  Google Scholar 

  3. Qamar S, Noor S, Rehman M, Seidel-Morgenstern A (2010) Numerical solution of a multi-dimensional batch crystallization model with fines dissolution. Comput Chem Eng 36(3):1148–1160

    Google Scholar 

  4. Kaya A (2015) Finite difference approximations of multidimensional unsteady convection–diffusion–reaction equations. J Comput Phys 285:331–349

    Article  MathSciNet  MATH  Google Scholar 

  5. Siraj-ul-Islam, Šarler B, Vertnik R, Kosec G (2012) Radial basis function collocation method for the numerical solution of the two-dimensional transient nonlinear coupled Burgers equations. Appl Math Model 36(3):1148–1160

    Article  MathSciNet  MATH  Google Scholar 

  6. Siraj-ul-Islam, Vertnik R, Šarler B (2013) Local radial basis function collocation method along with explicit time stepping for hyperbolic partial differential equations. Appl Numer Math 67:136–151

    Article  MathSciNet  MATH  Google Scholar 

  7. Lu J, Fang J, Tan S, Shu C-W, Zhang M (2016) Inverse lax-wendroff procedure for numerical boundary conditions of convection–diffusion equations. J Comput Phys 317:276–300

    Article  MathSciNet  MATH  Google Scholar 

  8. Jeon Y (2015) Hybridized SUPG and Upwind numerical schemes for convection dominated diffusion problems. J Comput Appl Math 275:91–99

    Article  MathSciNet  MATH  Google Scholar 

  9. Knobloch P (2009) On the choice of the SUPG parameter at outflow boundary layers. Adv Comput Math 31(4):369–389

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohen A, Dahmen W, Welper G (2012) Adaptivity and variational stabilization for convection–diffusion equations. Math Model Numer Anal 46(05):1247–1273

    Article  MathSciNet  MATH  Google Scholar 

  11. Demkowicz L, Heuer N (2013) Robust DPG method for convection–dominated diffusion problems. SIAM J Numer Anal 51(5):2514–2537

    Article  MathSciNet  MATH  Google Scholar 

  12. De Frutos J, García-Archilla B, Novo J (2011) An adaptive finite element method for evolutionary convection dominated problems. Comput Methods Appl Mech Eng 200(49):3601–3612

    Article  MathSciNet  MATH  Google Scholar 

  13. de Frutos J, García-Archilla B, John V, Novo J (2014) An adaptive SUPG method for evolutionary convection–diffusion equations. Comput Methods Appl Mech Eng 273:219–237

    Article  MathSciNet  MATH  Google Scholar 

  14. Codina R (1998) Comparison of some finite element methods for solving the diffusion–convection–reaction equation. Comput Methods Appl Mech Eng 156(1):185–210

    Article  MathSciNet  MATH  Google Scholar 

  15. Jeon Y (2010) Analysis of the cell boundary element methods for convection dominated convection–diffusion equations. J Comput Appl Math 234(8):2469–2482

    Article  MathSciNet  MATH  Google Scholar 

  16. Dehghan M, Mohammadi V (2017) A numerical scheme based on radial basis function finite difference (RBF-FD) technique for solving the high-dimensional nonlinear Schrödinger equations using an explicit time discretization: Runge–Kutta method. Comput Phys Commun 217:23–34

    Article  MathSciNet  MATH  Google Scholar 

  17. Cueto E, Chinesta F (2013) Meshless methods for the simulation of material forming. Int J Mater Form 8(1):25–43

    Article  Google Scholar 

  18. Siraj-ul-Islam, Singh V, Kumar S (2017) Estimation of dispersion in an open channel from an elevated source using an upwind local meshless method. Int J Comput Methods 14(02):1750009

    Article  MathSciNet  MATH  Google Scholar 

  19. Gu Y, Liu G-R (2006) Meshless techniques for convection dominated problems. Comput Mech 38(2):171–182

    Article  MathSciNet  MATH  Google Scholar 

  20. Stevens D, Power H, Lees M, Morvan H (2009) The use of PDE centres in the local RBF Hermitian method for 3D convective-diffusion problems. J Comput Phys 228(12):4606–4624

    Article  MathSciNet  MATH  Google Scholar 

  21. Stevens D, Power H (2015) The radial basis function finite collocation approach for capturing sharp fronts in time dependent advection problems. J Comput Phys 298:423–445

    Article  MathSciNet  MATH  Google Scholar 

  22. Shen Q (2010) Local RBF-based differential quadrature collocation method for the boundary layer problems. Eng Anal Bound Elem 34(3):213–228

    Article  MathSciNet  MATH  Google Scholar 

  23. Dehghan M, Abbaszadeh M (2017) The use of proper orthogonal decomposition (POD) meshless RBF-FD technique to simulate the shallow water equations. J Comput Phys 351:478–510

    Article  MathSciNet  MATH  Google Scholar 

  24. Dehghan M, Abbaszadeh M (2018) Solution of multi-dimensional Klein–Gordon–Zakharov and Schrödinger/Gross–Pitaevskii equations via local radial basis functions-differential quadrature (RBF-DQ) technique on non-rectangular computational domains. Eng Anal Bound Elem 92:156–170

    Article  MathSciNet  MATH  Google Scholar 

  25. Ilati M, Dehghan M (2018) Error analysis of a meshless weak form method based on radial point interpolation technique for Sivashinsky equation arising in the alloy solidification problem. J Comput Appl Math 327:314–324

    Article  MathSciNet  MATH  Google Scholar 

  26. Ilati M, Dehghan M (2015) The use of radial basis functions (RBFs) collocation and RBF-QR methods for solving the coupled nonlinear sine-Gordon equations. Eng Anal Bound Elem 52:99–109

    Article  MathSciNet  MATH  Google Scholar 

  27. Ahmad M, Siraj-ul-Islam (2018) Meshless analysis of parabolic interface problems. Eng Anal Bound Elem 94:134–152

    Article  MathSciNet  MATH  Google Scholar 

  28. Siraj-ul-Islam, Ahmad M (2018) Meshless analysis of elliptic interface boundary value problems. Eng Anal Bound Elem 92:38–49

    Article  MathSciNet  MATH  Google Scholar 

  29. Siraj-ul-Islam, Ahmad I, Khaliq AQ (2017) Local RBF method for multi-dimensional partial differential equations. Comput Math Appl 74(2):292–324

    Article  MathSciNet  MATH  Google Scholar 

  30. Shu C-W, Osher S (1989) Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J Comput Phys 83(1):32–78

    Article  MathSciNet  MATH  Google Scholar 

  31. Ngo A, Bastian P, Ippisch O (2015) Numerical solution of steady-state groundwater flow and solute transport problems: discontinuous Galerkin based methods compared to the streamline diffusion approach. Comput Methods Appl Mech Eng 294:331–358

    Article  MathSciNet  MATH  Google Scholar 

  32. Ali M (2012) Optimal operation of industrial batch crystallizers a nonlinear model-based control approach. Thesis 36(3):1148–1160

    Google Scholar 

  33. Siraj-ul-Islam, Šarler B, Aziz I, Haq F (2011) Haar wavelet collocation method for the numerical solution of boundary layer fluid flow problems. Int J Therm Sci 50:686–697

    Article  Google Scholar 

  34. Siraj-ul-Islam, Aziz I, Al-Fhaid A, Shah A (2013) A numerical assessment of parabolic partial differential equations using haar and legendre wavelets. Appl Math Model 37(23):9455–9481

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vikendra Singh or Siraj-ul-Islam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations'.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Siraj-ul-Islam & Mohanty, R.K. Local meshless method for convection dominated steady and unsteady partial differential equations. Engineering with Computers 35, 803–812 (2019). https://doi.org/10.1007/s00366-018-0632-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-018-0632-4

Keywords

Navigation