[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Numerical solution of a time-fractional PDE in the electroanalytical chemistry by a local meshless method

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In the current manuscript, we consider a fractional partial integro-differential equation that has some applications in the electroanalytical chemistry. The fractional derivative is based on the Riemann–Liouville fractional integral. The current numerical investigation is based on the following procedures: at first, a difference scheme has been used to discrete the temporal direction, second, the local RBF-DQ method is employed to discrete the spatial direction, and finally, these procedures are combined to obtain a full-discrete scheme. For the constructed numerical technique, we prove the unconditional stability and also obtain an error bound. We employ some test problems to show the accuracy of the proposed technique. In addition, we compare the obtained numerical results using the present method with the existing methods in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baeumer B, Kovacs M, Meerschaert MM (2008) Numerical solutions for fractional reaction-diffusion equations. Comput Math Appl 55:2212–2226

    Article  MathSciNet  MATH  Google Scholar 

  2. Bagley R, Torvik P (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27:201–210

    Article  MATH  Google Scholar 

  3. Bayona V, Moscoso M, Carretero M, Kindelan M (2010) RBF-FD formulas and convergence properties. J Comput Phys 229(22):8281–8295

    Article  MATH  Google Scholar 

  4. Bayona V, Moscoso M, Kindelan M (2011) Optimal constant shape parameter for multiquadric based RBF-FD method. J Comput Phys 230(19):7384–7399

    Article  MathSciNet  MATH  Google Scholar 

  5. Bayona V, Moscoso M, Kindelan M (2012) Gaussian RBF-FD weights and its corresponding local truncation errors. Eng Anal Bound Elem 36(9):1361–1369

    Article  MathSciNet  MATH  Google Scholar 

  6. Bayona V, Moscoso M, Kindelan M (2012) Optimal variable shape parameter for multiquadric based RBF-FD method. J Comput Phys 231(6):2466–2481

    Article  MathSciNet  MATH  Google Scholar 

  7. Bellman R, Kashef B, Casti J (1972) Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J Comput Phys 10(1):40–52

    Article  MathSciNet  MATH  Google Scholar 

  8. Bollig EF, Flyer N, Erlebacher G (2012) Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs. J Comput Phys 231(21):7133–7151

    Article  MathSciNet  Google Scholar 

  9. Buhmann MD (2003) Radial basis functions: theory and implementations, vol 12. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  10. Chen CM, Liu F, Turner I, Anh V (2007) A Fourier method for the fractional diffusion equation describing sub-diffusion. J Comput Phys 227(2):886–897

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng AHD (2012) Multiquadric and its shape parameter-A numerical investigation of error estimate, condition number, and round-of-error by arbitrary precision computation. Eng Anal Bound Elem 36:220–239

    Article  MathSciNet  MATH  Google Scholar 

  12. Dehghan M (2006) Solution of a partial integro-differential equation arising from viscoelasticity. Int J Comput Math 83(1):123–129

    Article  MathSciNet  MATH  Google Scholar 

  13. Dehghan M, Manafian J, Saadatmandi A (2010) Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer Methods Partial Differ Equations 26(2):448–479

    MathSciNet  MATH  Google Scholar 

  14. Dehghan M, Nikpour A (2013) Numerical solution of the system of second-order boundary value problems using the local radial basis functions based differential quadrature collocation method. Appl Math Model 37(18):8578–8599

    Article  MathSciNet  MATH  Google Scholar 

  15. Dehghan M, Nikpour A (2013) The solitary wave solution of coupled Klein–Gordon–Zakharov equations via two different numerical methods. Comput Phys Commun 184(9):2145–2158

    Article  MathSciNet  MATH  Google Scholar 

  16. Dehghan M, Abbaszadeh M (2017) An upwind local radial basis functions-differential quadrature (RBF-DQ) method with proper orthogonal decomposition (POD) approach for solving compressible Euler equation. Eng Anal Bound Elem. https://doi.org/10.1016/j.enganabound.2017.10.004 (in press)

  17. Dehghan M, Mohammadi V (2015) The numerical solution of Cahn–Hilliard (CH) equation in one, two and three-dimensions via globally radial basis functions (GRBFs) and RBFs-differential quadrature (RBFs-DQ) methods. Eng Anal Bound Elem 51:74–100

    Article  MathSciNet  MATH  Google Scholar 

  18. Dehghan M, Shokri A (2008) A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions. Math Comput Simul 79(3):700–715

    Article  MathSciNet  MATH  Google Scholar 

  19. Dehghan M (2006) Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math Comput Simul 71(1):16–30

    Article  MathSciNet  MATH  Google Scholar 

  20. Driscoll TA, Fornberg B (2002) Interpolation in the limit of increasingly flat radial basis functions. Comput Math Appl 43(3):413–422

    Article  MathSciNet  MATH  Google Scholar 

  21. Fasshauer GE (2007) Meshfree approximation methods with MATLAB. World Scientific, Singapore

    Book  MATH  Google Scholar 

  22. Flyer N, Lehto E, Blaise S, Wright GB, St-Cyr A (2012) A guide to RBF-generated finite differences for nonlinear transport: shallow water simulations on a sphere. J Comput Phys 231(11):4078–4095

    Article  MathSciNet  MATH  Google Scholar 

  23. Fornberg B, Lehto E (2011) Stabilization of RBF-generated finite difference methods for convective PDEs. J Comput Phys 230(6):2270–2285

    Article  MathSciNet  MATH  Google Scholar 

  24. Fornberg B, Lehto E, Powell C (2013) Stable calculation of Gaussian-based RBF-FD stencils. Comput Math Appl 65(4):627–637

    Article  MathSciNet  MATH  Google Scholar 

  25. Gao GH, Sun ZZ (2011) Compact finite difference scheme for the fractional sub-diffusion equations. J Comput Phys 230:586–595

    Article  MathSciNet  MATH  Google Scholar 

  26. Gonzalez-Rodriguez P, Bayona V, Moscoso M, Kindelan M (2015) Laurent series based RBF-FD method to avoid ill-conditioning. Eng Anal Bound Elem 52:24–31

    Article  MathSciNet  MATH  Google Scholar 

  27. Goto M, Oldham KB (1973) Semiintegral electroanalysis: shapes of neopolarograrns. Anal Chem 45:2043–2050

    Article  Google Scholar 

  28. Goto M, Oldham KB (1973) Semiintegral electroanalysis: studies on the neopolarograrns plateau. Anal Chem 46:1522–1530

    Article  Google Scholar 

  29. Goto M, Ishii D (1975) Semidifferential elertroanalysis. J Electroanal Chem Interfacial Electrochem 61:361–365

    Article  Google Scholar 

  30. Grenness M, Oldham KB (1972) Semiintegral electroanalysis: theory and verification. Anal Cllem 44:1121–1129

    Google Scholar 

  31. Gu YT, Wang QX, Lam KY (2007) A meshless local Kriging method for large deformation analyses. Comput Methods Appl Mech Eng 196:1673–1684

    Article  MATH  Google Scholar 

  32. Gu YT, Liu GR (2001) A local point interpolation method for static and dynamic analysis of thin beams. Comput Methods Appl Mech Eng 190:5515–5528

    Article  MATH  Google Scholar 

  33. Gu YT, Wang W, Zhang LC, Feng XQ (2011) An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields. Eng Fract Mech 78:175–190

    Article  Google Scholar 

  34. Hardy RL (1971) Multiquadric equations of topography and other irregular surfaces. J Geophys Res 76:1705–1915

    Google Scholar 

  35. Henry BI, Wearne SL (2000) Fractional reaction-diffusion. Phys A 276:448–455

    Article  MathSciNet  Google Scholar 

  36. Kansa EJ (1990) Multiquadrics A scattered data approximation scheme with applications to computational fluid-dynamics I. Comput Math Appl 19:127–145

    Article  MathSciNet  MATH  Google Scholar 

  37. Kansa EJ (1990) Multiquadrics A scattered data approximation scheme with applications to computational fluid dynamics—II. Comput Math Appl 19:147–161

    Article  MathSciNet  MATH  Google Scholar 

  38. Kansa EJ, Aldredge RC, Ling L (2009) Numerical simulation of two-dimensional combustion using mesh-free methods. Eng Anal Bound Elem 33:940–950

    Article  MathSciNet  MATH  Google Scholar 

  39. Keightley AM, Myland JC, Oldham KB, Symons PG (1992) Reversiblc cyclic volammetry in the presense of product. J Electronal Chem 322:25–54

    Article  Google Scholar 

  40. Kutanaei SS, Roshan N, Vosoughi A, Saghafi S, Barari A, Soleimani S (2012) Numerical solution of Stokes flow in a circular cavity using mesh-free local RBF-DQ. Eng Anal Bound Elem 36(5):633–638

    Article  MathSciNet  MATH  Google Scholar 

  41. Li CP, Ding H (2014) Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl Math Model. https://doi.org/10.1016/j.apm.2013.12.002 (in press)

  42. Li L, Xu D (2013) Alternating direction implicit-Euler method for the two-dimensional fractional evolution equation. J Comput Phys 236:157–168

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer Dordrecht, Berlin, Heidelberg, New York

    Google Scholar 

  44. Lopez-Marcos JC (1990) A difference scheme for a nonlinear partial integro-differential equation. SIAM J Numer Anal 27:20–31

    Article  MathSciNet  MATH  Google Scholar 

  45. Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A 37:R161–208

    Article  MathSciNet  MATH  Google Scholar 

  46. Momani S, Odibat ZM (2007) Fractional green function for linear time-fractional inhomogeneous partial differential equations in fluid mechanics. J Appl Math Comput 24:167–178

    Article  MathSciNet  MATH  Google Scholar 

  47. Odibat ZM (2009) Computational algorithms for computing the fractional derivatives of functions. Math Comput Simul 79:2013–2020

    Article  MathSciNet  MATH  Google Scholar 

  48. Oldham KB, Spanier J (1974) The fractional calculus: theory and application of differentiation and integration to arbitrary order. Academic Press, New York

    MATH  Google Scholar 

  49. Oldham KB, Spanier J (1974) The fractional calculus. Academic Press, New York, London

    MATH  Google Scholar 

  50. Oldham KR (1972) A signal-independent electroanalytical method. Anal Chenl 44:196–198

    Article  Google Scholar 

  51. Oldham KB (1976) Semiintegration of cyclic voltammograms. J Electronnal Chem 72:371–378

    Article  Google Scholar 

  52. Oldham KB (1991) Interrelation of current and concentration at electrodes. I. Appl Electrochem 21:1068–1072

    Article  Google Scholar 

  53. Oldham KB, Spanier J (1970) The replacement of Fick’s law by a formulation involving semidifferentiation. J Electroanal Chem Interfacial Electrochem 26:331–341

    Article  Google Scholar 

  54. Rippa S (1999) An algorithm for selecting a good value for the parameter \(c\) in radial basis function interpolation. Adv Comput Math 11:193–210

    Article  MathSciNet  MATH  Google Scholar 

  55. Podulbny I (1999) Fractional differential equations. Academic Press, New York

    Google Scholar 

  56. Saadatmandi A, Dehghan M (2010) A new operational matrix for solving fractional-order differential equations. Comput Math Appl 59(3):1326–1336

    Article  MathSciNet  MATH  Google Scholar 

  57. Sarra SA (2012) A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains. Appl Math Comput 218(19):9853–9865

    MathSciNet  MATH  Google Scholar 

  58. Sarra SA (2014) Regularized symmetric positive definite matrix factorizations for linear systems arising from RBF interpolation and differentiation. Eng Anal Bound Elem 44:76–86

    Article  MathSciNet  MATH  Google Scholar 

  59. Sarra SA (2011) Radial basis function approximation methods with extended precision floating point arithmetic. Eng Anal Bound Elem 35:68–76

    Article  MathSciNet  MATH  Google Scholar 

  60. Shokri A, Dehghan M (2012) Meshless method using radial basis functions for the numerical solution of two-dimensional complex Ginzburg–Landau equation. Comput Model Eng Sci 34:333–358

    MathSciNet  MATH  Google Scholar 

  61. Shankar V, Wright GB, Kirby RM, Fogelson AL (2015) A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction-diffusion equations on surfaces. J Sci Comput 63(3):745–768

    Article  MathSciNet  MATH  Google Scholar 

  62. Shu C, Ding H, Yeo K (2003) Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 192(7):941–954

    Article  MATH  Google Scholar 

  63. Shu C (2012) Differential quadrature and its application in engineering. Springer, New York

    Google Scholar 

  64. Shu C, Ding H, Yeo K (2004) Solution of partial differential equations by a global radial basis function-based differential quadrature method. Eng Anal Bound Elem 28(10):1217–1226

    Article  MATH  Google Scholar 

  65. Patera AT (1984) A spectral element method for fluid dynamics: laminar flow in a channel expansion. J Comput Phys 54:468–488

    Article  MATH  Google Scholar 

  66. Roohani Ghehsareh H, Bateni SH, Zaghian A (2015) A meshfree method based on the radial basis functions for solution of two-dimensional fractional evolution equation. Eng Anal Bound Elem 61:52–60

    Article  MathSciNet  MATH  Google Scholar 

  67. Sokolov IM, Schmidt MGW, Sagués F (2006) On reaction-subdiffusion equations. Phys Rev E 73:031102

    Article  Google Scholar 

  68. Tolstykh A, Shirobokov D (2003) On using radial basis functions in a finite difference mode with applications to elasticity problems. Comput Mech 33(1):68–79

    Article  MathSciNet  MATH  Google Scholar 

  69. Tolstykh AI (2000) On using RBF-based differencing formulas for unstructured and mixed structured-unstructured grid calculations. In: Proceedings of the 16th IMACS World Congress on Scientific Computation, Applied Mathematics and Simulation. Lausanne, p 6

  70. Tornabene F, Fantuzzi N, Bacciocchi M, Neves AM, Ferreira AJ (2016) MLSDQ based on RBFs for the free vibrations of laminated composite doubly-curved shells. Compos B Eng 99:30–47

    Article  Google Scholar 

  71. Quarteroni A, Valli A (1997) Numerical approximation of partial differential equations. Springer, New York

    MATH  Google Scholar 

  72. Wendland H (2005) Scattered data approximation. In: Cambridge monograph on applied and computational mathematics. Cambridge University Press, Cambridge

  73. Wess W (1996) The fractional diffusion equation. J Math Phys 27:2782–2785

    Article  MathSciNet  Google Scholar 

  74. Yuste SB (2006) Weighted average finite difference methods for fractional diffusion equations. J Comput Phys 216:264–274

    Article  MathSciNet  MATH  Google Scholar 

  75. Yuste SB, Acedo L, Lindenberg K (2004) Reaction front in an \(A+B \rightarrow C\) reaction-subdiffusion process. Phys Rev E 69:036126

    Article  Google Scholar 

  76. Zhang N, Deng W, Wu Y (2012) Finite difference/element method for a two-dimensional modified fractional diffusion equation. Adv Appl Math Mech 4:496–518

    Article  MathSciNet  MATH  Google Scholar 

  77. Zhuang P, Liu F, Anh V, Turner I (2005) Stability and convergence of an implicit numerical method for the nonlinear fractional reaction-subdiffusion process. IMA J Appl Math 74:1–22

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for carefully reading this paper and for their comments and suggestions which have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karamali, G., Dehghan, M. & Abbaszadeh, M. Numerical solution of a time-fractional PDE in the electroanalytical chemistry by a local meshless method. Engineering with Computers 35, 87–100 (2019). https://doi.org/10.1007/s00366-018-0585-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-018-0585-7

Keywords

Navigation