[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A new quadtree-based approach for automatic quadrilateral mesh generation

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper, we present a new method for adaptive all-quadrilateral mesh generation for two-dimensional domains, including domains modeled by constraints with complex geometry or with varying scales. The method subdivides the domain’s bounding box using a new extended quadtree scheme. In this subdivision process, the quadtree node corners are moved onto the geometrical constraints using local deformation criteria during the tree refinement steps. We define new subdivision patterns as part of our extended quadtree to add flexibility in the adaptation and guarantee that geometrical constraints are entirely modeled by tree edges. During the process, we ensure grid alignment with constraint accuracy and element quality at every scale. Our proposal converts the tree structure into a mesh with only quadrilateral elements. Results showed that our method generates elements of reasonable quality even for complex geometries and varying scales. The small number of parameters controlling the process is intuitive and makes our method efficient and user friendly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals. Elsevier Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  2. Catmull E, Clark J (1978) Recursively generated B-spline surfaces on arbitrary topological meshes. Comput Aided Des 10:350–355

    Article  Google Scholar 

  3. Liu Y, Xing HL, Guan Z (2011) An indirect approach for automatic generation of quadrilateral meshes with arbitrary line constraints. Int J Numer Methods Eng 87:906–922

    Article  MathSciNet  MATH  Google Scholar 

  4. Borouchaki H, Frey PJ (1998) Adaptive triangular-quadrilateral mesh generation. Int J Numer Methods Eng 41:915–934

    Article  MathSciNet  MATH  Google Scholar 

  5. Owen SJ, Staten ML, Canann SA, Saigal S (1999) Q-Morph: an indirect approach to advancing front quad meshing. Int J Numer Methods Eng 44:1317–1340

    Article  MATH  Google Scholar 

  6. Lee K-Y, Kim I-I, Cho D-Y, Kim T-W (2003) An algorithm for automatic 2D quadrilateral mesh generation with line constraints. Comput Aided Des 35:1055–1068

    Article  Google Scholar 

  7. Ebeida MS, Karamete K, Mestreau E, Dey S (2010) Q-TRAN: A new approach to transform triangular meshes into quadrilateral meshes locally. Proceedings of the 19th International Meshing Roundtable 23–34

  8. Araújo C, Celes W (2014) quadrilateral mesh generation with deferred constraint insertion. Procedia Eng 82:88–100

    Article  Google Scholar 

  9. Blacker TD, Stephenson MB (1991) Paving: a new approach to automated quadrilateral mesh generation. Int J Numer Methods Eng 32:811–847

    Article  MATH  Google Scholar 

  10. Cass RJ, Benzley SE, Meyers RJ, Blacker TD (1996) Generalized 3-D paving: an automated quadrilateral surface mesh generation algorithm. Int J Numer Methods Eng 39:1475–1489

    Article  MATH  Google Scholar 

  11. Talbert JA, Parkinson AR (1990) Development of an automatic, two-dimensional finite element mesh generator using quadrilateral elements and Bezier curve boundary definition. Int J Numer Methods Eng 29:1551–1567

    Article  Google Scholar 

  12. Chae SW, Jeong JH (1997) Unstructured Surface Meshing Using Operators. In: Proc. of the 6th International Meshing Roundtable. Park City, Utah, pp 281–291

  13. Nowottny D (1997) Quadrilateral mesh generation via geometrically optimized domain decomposition. In: Proceedings, 6th International Meshing Roundtable, pp 309–320

  14. Tam T, Armstrong C (1991) 2D finite element mesh generation by medial axis subdivision. Adv Eng Softw Workst 13:313–324

    Article  MATH  Google Scholar 

  15. Miranda ACDO, Martha LF (2013) quadrilateral mesh generation using hierarchical templates. Proceedings of the 21st International Meshing Roundtable, pp 279–296

  16. Frey PJ, Marechal L (1998) Fast adaptive Quadtree Mesh Generation. In: Proc. of the 7th International Meshing Roundtable, pp 211–224

  17. Ebeida MS, Davis RL, Freund RW (2010) A new fast hybrid adaptive grid generation technique for arbitrary two-dimensional domains. International Journal for Numerical Methods in Engineering Int J Numer Methods Eng

  18. Yerry M, Shephard M (1983) A modified quadtree approach to finite element mesh generation. IEEE Comput Grap Appl 3:39–46

    Article  Google Scholar 

  19. Rushdi AA, Mitchell SA, Bajaj CL, Ebeida MS (2015) Robust all-quad meshing of domains with connected regions. Procedia Eng 124:96–108

    Article  Google Scholar 

  20. Schneiders R, Bünten R (1995) Automatic generation of hexahedral finite element meshes. Comput Aided Geom Des 12:693–707

    Article  MathSciNet  MATH  Google Scholar 

  21. Liang X, Ebeida MS, Zhang Y (2009) Guaranteed-quality all-quadrilateral mesh generation with feature preservation. Proceedings of the 18th International Meshing Roundtable 45–63

  22. Schneiders R, Schindler R, Weiler F (1996) Octree-based generation of hexahedral element meshes. Fifth International Meshing Roundtable, pp 205–216

  23. Atalay FB, Ramaswami S, Xu D (2008) Quadrilateral meshes with bounded minimum angle. Proceedings of the 17th International Meshing Roundtable, pp 73–91

  24. Samet H (1982) Neighbor finding techniques for images represented by quadtrees. Comput Graph Image Process 18:37–57

    Article  MATH  Google Scholar 

  25. Martti Mäntylä (1988) An introduction to solid modeling. Computer Science Press, Rockville

    Google Scholar 

  26. Herrmann LR (1976) Laplacian-isoparametric grid generation scheme. J Eng Mech Div ASCE 102:749–756

    Google Scholar 

  27. Ebeida MS, Patney A, Owens JD, Mestreau E (2011) Isotropic conforming refinement of quadrilateral and hexahedral meshes using two-refinement templates. Int J Numer Methods Eng 88:974–985

    Article  MathSciNet  MATH  Google Scholar 

  28. Lage M, Martha LF, Almeida JPMD, Lopes H (2015) IBHM: index-based data structures for 2D and 3D hybrid meshes. Eng Comput 1–18

  29. El-Hamalawi A (2000) A simple and effective element distortion factor. Comput Struct 75:507–513

    Article  Google Scholar 

  30. Kinney P (1997) CleanUp: Improving Quadrilateral Finite Element Meshes. Proceedings of the 6th International Meshing Roundtable, pp 437–447

  31. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput Graph 21:163–169

    Article  Google Scholar 

  32. Mitchell SA (1999) The all-hex geode-template for conforming a diced tetrahedral mesh to any diced hexahedral mesh. Eng Comput 15:228–235

    Article  MATH  Google Scholar 

  33. Yamakawa S, Shimada K (2002) HEXHOOP: modular templates for converting a hex-dominant mesh to an ALL-hex mesh. Eng Comput 18:211–228

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the reviewers for their valuable suggestions and insightful critiques that certainly improve the overall legibility and quality of this manuscript. The authors would like also to thank CNPq for partially supporting this reseach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axelle Pochet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pochet, A., Celes, W., Lopes, H. et al. A new quadtree-based approach for automatic quadrilateral mesh generation. Engineering with Computers 33, 275–292 (2017). https://doi.org/10.1007/s00366-016-0471-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-016-0471-0

Keywords

Navigation