Abstract
Over the last years, the numerical simulation of integrated processes has become the major challenge in virtual try-out of sheet metal components, including trimming operations that may occur between forming steps. Detailed simulation of trimming processes is a challenging task, particularly when integrated with other forming operations such as deep drawing or hemming. A simplified approach can be adopted in which elements outside the trim surface are deleted from the finite element (FE) model adjusting the remaining to the surface. Following this approach, the state variables are mapped from the old FE mesh to the new trimmed mesh to continue the simulation. This paper addresses this simplified approach to the trimming process exploring a previously presented algorithm (Finite Elem Anal Des 42: 1053–1060, Baptista et al. 2006), which allows the treatment of hexahedral finite element meshes. Particularly, it focuses on the performance evaluation of the implemented strategies for correcting the FE mesh to the trimming surface, including the treatment of pentahedral-shaped elements. Different correction and treatment strategies are evaluated on different types of meshes, based on numerical simulation results of simple mechanical tests: uniaxial tensile test and simple bending test. Finally, two practical applications are given where the local effect of the trimming algorithm is highlighted.
Similar content being viewed by others
References
Baptista AJ, Alves JL, Rodrigues DM, Menezes LF (2006) Trimming of 3D solid finite element meshes using parametric surfaces: application to sheet metal forming. Finite Elem Anal Des 42:1053–1060. doi:10.1016/j.finel.2006.03.005
Choi TH, Choi S, Na KH, Bae HS, Chung WJ (2002) Application of intelligent design support system for multi-step deep drawing process. J Mater Process Technol 130–131:76–88. doi:10.1016/S0924-0136(02)00780-X
Kawka M, Kakita T, Makinouchi A (1998) Simulation of multi-step sheet metal forming process by a static explicit FEM code. J Mater Process Technol 80–81:54–59. doi:10.1016/S0924-0136(98)00133-2
Yang DY, Ahn DG, Lee CH, Park CH, Kim TJ (2002) Integration of CAD/CAM/CAE/RP for the development of metal forming process. J Mater Process Technol 125–126:26–34. doi:10.1016/S0924-0136(02)00414-4
Dalloz A, Besson J, Gourgues-Lorenzon A-F, Sturel T, Pineau A (2009) Effect of shear cutting on ductility of a dual phase steel. Eng Fract Mech 76:1411–1424. doi:10.1016/j.engfracmech.2008.10.009
Gram MD, Wagoner RH (2011) Fineblanking of high strength steels: control of material properties for tool life. J Mater Process Technol 211:717–728. doi:10.1016/j.jmatprotec.2010.12.005
Husson C, Correia JPM, Daridon L, Ahzi S (2008) Finite elements simulations of thin copper sheets blanking: study of blanking parameters on sheared edge quality. J Mater Process Technol 199:74–83. doi:10.1016/j.jmatprotec.2007.08.034
Ghosh S, Li M, Khadke A (2005) 3D modeling of shear-slitting process for aluminum alloys. J Mater Process Technol 167:91–102. doi:10.1016/j.jmatprotec.2004.08.031
Li Y-M, Peng Y-H (2003) Fine-blanking process simulation by rigid viscous-plastic FEM coupled with void damage. Finite Elem Anal Des 39:457–472. doi:10.1016/S0168-874X(02)00103-8
Saanouni K, Belamri N, Autesserre P (2010) Finite element simulation of 3D sheet metal guillotining using advanced fully coupled elastoplastic-damage constitutive equations. Finite Elem Anal Des 46:535–550. doi:10.1016/j.finel.2010.02.002
Menezes LF, Teodosiu C (2000) Three-dimensional numerical simulation of the deep drawing process using solid finite elements. J Mater Process Technol 97:100–106. doi:10.1016/S0924-0136(99)00345-3
Oliveira MC, Alves JL, Menezes LF (2003) Improvement of a frictional contact algorithm for strongly curved contact problems. Int J Numer Meth Eng 58:2083–2101. doi:10.1002/nme.845
Oliveira MC, Alves JL, Menezes LF (2003) One step springback strategies in sheet metal forming. In: Owen DRJ, Onate E, Suárez B (eds) Proceedings of the 7th International Conference on Computational Plasticity (Complas), Barcelona, p 87
Oliveira MC, Alves JL, Chaparro BM, Menezes LF (2007) Study on the influence of work-hardening modeling in springback prediction. Int J Plast 23:516–543. doi:10.1016/j.ijplas.2006.07.003
Li KP, Carden WP, Wagoner RH (2002) Simulation of springback. Int J Mech Sci 44:103–122. doi:10.1016/S0020-7403(01)00083-2
Coelho LC, Gattass M, Figueiredo LH (2000) Intersecting and trimming parametric meshes on finite element shells. Int J Numer Meth Eng 47:777–800. doi:10.1002/(SICI)1097-0207(20000210)47:4<777:AID-NME797>3.0.CO;2-6
Dhondt G (2001) A new automatic hexahedral mesher based on cutting. Int J Numer Meth Eng 50:2109–2126. doi:10.1002/nme.114
Laurent H, Grèze R, Oliveira MC, Menezes LF, Manach PY, Alves JL (2010) Numerical study of springback using the split-ring test for an AA5754 aluminum alloy. Finite Elem Anal Des 46:751–759. doi:10.1016/j.finel.2010.04.004
Laurent H, Coer J, Grèze R, Manach PY, Andrade-Campos A, Oliveira MC, Menezes LF (2011) Mechanical behaviour and springback study of an aluminium alloy in warm forming conditions. Int Sch Res Netw ISRN Mech Eng :9. doi:10.5402/2011/381615
Oliveira MC, Padmanabhan R, Baptista AJ, Alves JL, Menezes LF (2009) Sensitivity study on some parameters in blank design. Mater Des 30:1223–1230. doi:10.1016/j.matdes.2008.06.010
Padmanabhan R, Oliveira MC, Baptista AJ, Alves JL, Menezes LF (2009) Blank design for deep drawn parts using parametric NURBS surfaces. J Mater Process Technol 209:2402–2411. doi:10.1016/j.jmatprotec.2008.05.035
Livermore Software Technology Corporation (Lstc) (2013) LS-DYNA® keyword user’s manual, volume I, Version R7.0. http://www.dynasupport.com/manuals/ls-dyna-manuals/ls-dyna-manual-r-7.0-vol-i
McMeeking RM, Rice JR (1975) Finite-element formulations for problems of large elastic-plastic deformation. Int J Solids Struct 11(5):601–616. doi:10.1016/0020-7683(75)90033-5
Yamada Y, Yoshimura N (1968) Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by the finite element method. Int J Mech Sci 10(5):343–354. doi:10.1016/0020-7403(68)90001-5
International Center For Numerical Methods In Engineering (CIMNE) (2013) GID 11 Reference manual. http://www.gidhome.com/index.php?option=com_content&id=297. Accessed Jan 2013
Oliveira MC, Alves JL, Menezes LF (2002) Springback evaluation using 3D finite elements. In: Yang DY, Oh SI, Huh H, Kim YH (eds) Proceedings of the 5th International Conference and workshop on numerical simulation of 3d sheet forming processes (NUMISHEET’2002)—verification of simulation with experiment, vol 1, pp 189–194
Padmanabhan R, Oliveira MC, Baptista AJ, Alves JL, Menezes LF (2007) Study on the influence of the refinement of a 3-D finite element mesh in springback evaluation of plane-strain channel sections. In: César de Sá JMA, Santos AD (eds) Proceedings of the 9th International Conference in numerical methods in industrial forming processes (NUMIFORM’07), American Institute of Physics Conference, vol 908, pp 847 852. doi:10.1063/1.2740916
Teodosiu C (1989) The plastic spin: microstructural origin and computational significance. In: Owen DRJ, Hinton E, Onate E (eds) Proceedings of the 2nd Int. Conf. on Computational Plasticity, Barcelona, p 163
Alves JL, Oliveira MC, Menezes LF (2004) An advanced constitutive model in sheet metal forming simulation: the Teodosiu microstructural model and the Cazacu Barlat yield criterion. In: Glosh S, Castro JC, Lee JK (eds) Proceedings of the Numiform’04 on materials processing and design: modelling, simulation and applications. Amer Inst Physics, Melville, p 1645
Bouvier S, Alves JL, Oliveira MC, Menezes LF (2005) Modelling of anisotropic work-hardening behaviour of metallic materials subjected to strain path changes. Comput Mater Sci 32(3–4):301–315
Hughes TJR (1980) Generalization of selective integration procedures to anisotropic and nonlinear. Int J Numer Meth Eng 15:1413–1418
Menezes LF, Teodosiu C, Makinouchi A (1991) 3-D solid elasto-plastic elements for simulating sheet metal forming processes by the finite element method. In: Berichte VDI (ed) Proceedings FE-simulation of 3-D sheet metal forming processes in automotive industry. VDI VERLAG, Dusseldorf, pp 381–403
Alves JL, Menezes LF (2001) Application of tri-linear and tri-quadratic 3-D solid finite elements in sheet metal forming simulations. In: Mori K-I (ed) Proceedings of the Numiform’01 on Simulation of materials processing: theory, methods and applications. Balkema, Rotterdam, pp 639–644
Baptista AJ, Alves JL, Oliveira MC, Rodrigues DM, Menezes LF (2005) Application of the incremental volumetric remapping method in the simulation of multi-step deep drawing processes. In: Smith LM, Zhang L, Wang C-T, Shi MF, Yoon J-W, Stoughton TB, Cao J, Pourboghrat F (eds) Proceedings of the 6th International Conference and workshop on numerical simulation of 3d sheet metal forming processes (NUMISHEET). Melville, New York, p 173
Demeri MY, Lou M, Saran MJ (2000) A benchmark test for springback simulation in sheet metal forming. Soc Automot Eng 01:2657. doi:10.4271/2000-01-2657
Li S, Hoferlin E, Van Bael A, Van Houtte P, Teodosiu C (2003) Finite element modelling of plastic anisotropy induced by texture and strain-path change. Int J Plast 19:647–674. doi:10.1016/S0749-6419(01)00079-1
Acknowledgments
This work was co-financed by the Portuguese Foundation for Science and Technology via project PTDC/EME–TME/103350/2008 and by FEDER via the “Programa Operacional Factores de Competitividade” of QREN with COMPETE reference: FCOMP-01-0124-FEDER-010301.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Barros, P.D., Baptista, A.J., Alves, J.L. et al. Trimming of 3D solid finite element meshes: sheet metal forming tests and applications. Engineering with Computers 31, 237–257 (2015). https://doi.org/10.1007/s00366-013-0344-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00366-013-0344-8