[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Fractality of refined triangular grids and space-filling curves

  • Original article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

In this paper we explain the fractal geometry of refined and derefined triangular and tetrahedral meshes by means of the application of iterated function systems (IFS). These meshes feature a remarkable amplifying invariance under changes of scale. The applications of IFS families are shown equivalent to the use of adaptive strategies that combine the refinement procedure with the derefinement procedure. In addition, space-filling curves (SFC) are used to assign a binary code for any 2D triangular refined mesh. SFC are also shown as useful for the problem of automatic domain decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Barnsley MF (1991) Fractals everywhere. Academic, New York

    Google Scholar 

  2. Gutiérrez JM, Iglesias A, Rodríguez MA (1996) A multifractal analysis of IFSP invariant measures with application to fractal image generation. Fractals 4(1):17–27

    MathSciNet  Google Scholar 

  3. Wu Z-B (2003) Self-similarity limits of genomic signatures. Fractals 11(1):19–25

    Article  Google Scholar 

  4. Falconer KJ (2003) Fractal geometry: mathematical foundations and applications, 2nd edn. Wiley, New York

    Google Scholar 

  5. Rivara M-C (1984) Mesh refinement based on the generalized bisection of simplices. SIAM J Numer Anal 2:604–613

    MathSciNet  Google Scholar 

  6. Rivara M-C (1989) Selective refinement/derefinement algorithm for sequences of nested triangulations. Int J Numer Meth Eng 28:2889–2906

    MathSciNet  MATH  Google Scholar 

  7. Mitchell WF (1992) Optimal multilevel iterative methods for adaptive grids. SIAM J Sci Stat Comp 13:146–167

    MathSciNet  MATH  Google Scholar 

  8. Bänsch E (1991) Local mesh refinement in 2 and 3 dimensions. IMPACT Comp Sci Eng 3:181–191

    Google Scholar 

  9. Plaza A, Carey GF (2000) Local refinement of simplicial grids based on the skeleton. Appl Numer Math 32(2):195–218

    Article  MathSciNet  MATH  Google Scholar 

  10. Plaza A, Padrón MA, Carey GF (2000) A 3d refinement derefinement combination for solving evolution problems. Appl Numer Math 32(4):401–418

    Article  MATH  Google Scholar 

  11. Plaza A (1996) The fractal behavior of triangular refined/derefined meshes. Commun Num Meth Eng 12:295–302

    Article  Google Scholar 

  12. Sagan H (1994) Space-filling curves. Springer, Berlin Heidelberg New York

    Google Scholar 

  13. Rivara M-C, Iribarren G (1996) The 4-triangles longest-side partition of triangles and linear refinement algorithms. Math Comput 65(216):1485–1502

    Article  MathSciNet  MATH  Google Scholar 

  14. Plaza A, Suárez JP, Padrón MA, Falcón S, Amieiro D (2004) Mesh quality improvement and other properties in the four-triangles longest-edge partition. Comput Aided Geom Des 21(4):353–369

    Article  Google Scholar 

  15. Suárez JP, Carey GF, Plaza A (2001) Graph-based data structures for skeleton based refinement algorithms. Commun Numer Methods Eng 17(12):903–910

    Article  MathSciNet  Google Scholar 

  16. Rivara M-C, Inostroza P (1997) Using longest-side bisection techniques for the automatic refinement of Delaunay triangulations. Int J Numer Methods Eng 40:581–597

    Article  MathSciNet  MATH  Google Scholar 

  17. Peano G (1896) Sur une curbe qui remplit toute une aire plane. Math Ann 36:157–160

    Google Scholar 

  18. Pajarola R, Antonijuan M, Lario R (2002) QuadTIN: quadtree based triangulated irregular networks. In: Proceedings of IEEE Visualization, pp 395–402

  19. Evans W, Kirkpatrick D, Townwsend G (2001) Right-triangulated irregular networks. Algorithmica (Special Issue on Algorithms for Geographical Information) 30(2):264–286

    Article  MathSciNet  MATH  Google Scholar 

  20. Pajarola R, Widmayer P (2000) An image compression method for spatial search. IEEE Trans Image Process 9(3):357–365

    Article  Google Scholar 

  21. Velho L, Figueiredo de LH, Gomes J (1999) Hierarchical generalized triangle Strips. Vis Comput 15(1):21–35

    Article  Google Scholar 

  22. Liu A, Joe B (1995) Quality local refinement of tetrahedral meshes based on bisection. SIAM J Sci Stat Comput 16:1269–1291

    MATH  Google Scholar 

  23. Plaza A, Rivara M-C (2002) Asymptotic behavior of the average adjacencies for skeleton-regular triangular and tetrahedral partitions. J Comput Appl Math 140(1–2):673–693

    Article  MathSciNet  MATH  Google Scholar 

  24. Rivara M-C, Levin C (1992) A 3-D refinement algorithm siutable for adaptive and multigrid techniques. Commun Appl Numer Methods 8:281–290

    MATH  Google Scholar 

  25. Pilkington JR, Baden SB (1996) Dynamic partitioning of non-uniform structured workloads with spacefilling curves. IEEE Trans Parallel Distrib Syst 7(3):288–300

    Article  Google Scholar 

  26. Edwards HC, Browne JC (1996) Scalable distributed dynamic array and its application to a parallel hp adaptive finite element code. In: TICAM, Texas Institute for Computational and Applied Mathematics, The University of Texas

  27. Iqbal S, Carey GF (2002) Neural nets for mesh assessment. TICAM Report 02-02

  28. Edwards HC (2001) Zoltan software, Sandia National Laboratories. http://www.cs.sandia.gov/Zoltan/ug_html/ug_alg_hsfc.html

Download references

Acknowledgements

This work has been partially supported by Project UNI-2003/16 of the University of Las Palmas de Gran Canaria and by Project PI2003/35 of the Gobierno de Canarias.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Plaza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plaza, A., Suárez, J.P. & Padrón, M.A. Fractality of refined triangular grids and space-filling curves. Engineering with Computers 20, 323–332 (2005). https://doi.org/10.1007/s00366-004-0301-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-004-0301-7

Keywords

Navigation