[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Global Phase Portraits of Separable Polynomial Rigid Systems with a Center

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we study dynamics of a class of separable polynomial rigid systems and classify global phase portraits under certain conditions. Some complicated and interesting dynamical behaviors are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47

Similar content being viewed by others

References

  • Algaba, A., Reyes, M.: Centers with degenerate infinity and their commutators. J. Math. Anal. Appl. 278, 109–124 (2003)

    Article  MathSciNet  Google Scholar 

  • Algaba, A., Reyes, M.: Computing center conditions for vector fields with constant angular speed. J. Comput. Appl. Math. 154, 143–159 (2003)

    Article  MathSciNet  Google Scholar 

  • Artés, J.C., Itikawa, J., Llibre, J.: Uniform isochronous cubic and quartic centers: revisited. J. Comput. Appl. Math. 313, 448–453 (2017)

    Article  MathSciNet  Google Scholar 

  • Alwash, M.A.M.: On the center conditions of certain cubic systems. Proc. Amer. Math. Soc. 126, 3335–3336 (1998)

    Article  MathSciNet  Google Scholar 

  • Berthier, M., Moussu, R.: Réversibilité et classification des centres nilpotents. Ann. Inst. Fourier 44, 465–494 (1994)

    Article  MathSciNet  Google Scholar 

  • Briskin, M., Roytvarf, N., Yomdin, Y.: Center conditions at infinity for Abel differential equations. Annals Math. 172, 437–483 (2010)

    Article  MathSciNet  Google Scholar 

  • Bruno, A.D.: Local Methods in Non-linear Differential Equations. Springer, Berlin (1989)

    Book  Google Scholar 

  • Cima, A., Gasull, A., Manosas, F.: Centers for trigonometric Abel equations. Qual. Theory Dyn. Syst. 11, 19–37 (2012)

    Article  MathSciNet  Google Scholar 

  • Collins, C.B.: Conditions for a centre in a simple class of cubic systems. Differ. Integral Equ. 10, 333–356 (1997)

    MathSciNet  Google Scholar 

  • Collins, C.B.: Algebraic conditions for a centre or a focus in some simple systems of arbitrary degree. J. Math. Anal. Appl. 195, 719–735 (1995)

    Article  MathSciNet  Google Scholar 

  • Conti, R.: Uniformly isochronous centers of polynomial systems in \(\mathbb{R}^2\). In: Differential equations, dynamical systems, and control science, vol. 152 of Lecture Notes in Pure and Appl. Dekker, New York, pp. 21-31 (1994)

  • Conti, R.: Centers of planar polynomial systems. A review. Matematiche LII I, 207–240 (1998)

    MathSciNet  Google Scholar 

  • Dias, F.S., Mello, L.F.: The center-focus problem and small amplitude limit cycles in rigid systems. Discrete Contin. Dyn. Syst. 32, 1627–1637 (2012)

    Article  MathSciNet  Google Scholar 

  • Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. UniversiText, Springer-Verlag, New York (2006)

    Google Scholar 

  • Gasull, A., Prohens, R., Torregrosa, J.: Limit cycles for rigid cubic systems. J. Math. Anal. Appl. 303, 391–404 (2005)

    Article  MathSciNet  Google Scholar 

  • Gasull, A., Torregrosa, J.: Exact number of limit cycles for a family of rigid systems. Proc. Amer. Math. Soc. 133, 751–758 (2005)

    Article  MathSciNet  Google Scholar 

  • Li, T., Llibre, J.: On the 16th Hilbert problem for discontinuous piecewise polynomial Hamiltonian systems. J. Dyn. Differ. Equ. 35, 87–102 (2023)

    Article  MathSciNet  Google Scholar 

  • Llibre, J., Rabanal, R.: Center conditions for a class of planar rigid polynomial differential systems. Discrete Contin. Dyn. Syst. 35, 1075–1090 (2015)

    Article  MathSciNet  Google Scholar 

  • Llibre, J., Ramírez, R., Ramírez, V.: An inverse approach to the center-focus problem for polynomial differential system with homogenous nonlinearities. J. Differ. Equ. 263, 3327–3369 (2017)

    Article  MathSciNet  Google Scholar 

  • Lyapunov, A.M.: Probléme Général de la Stabilité du Mouvement. Princeton University Press, New Jersey (1947). (Annals of Mathematics Studies, no. 17)

  • Lyapunov, A.M.: Stability of Motion. Academic Press, New York-London (1966). (Mathematics in Science and Engineering, Vol. 30)

  • Mazzi, L., Sabatini, M.: Commutators and linearizations of isochronous Centers. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, 11, 81-98 (2000)

  • Rudenok, A.E.: Strong isochronism of a center, Periods of limit cycles of a Liénard’s system. Differ. Equa. 11, 610–617 (1975)

    MathSciNet  Google Scholar 

  • Teixeira, M.A., Yang, J.: The center-focus problem and reversibility. J. Differ. Equ. 174, 237–251 (2001)

    Article  MathSciNet  Google Scholar 

  • Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative Theory of Differential Equations. Transl. Math. Monogr., Amer. Math. Soc., Providence, RI (1992)

Download references

Acknowledgements

The authors are very grateful to the anonymous referees for the valuable comments that greatly improve the presentation and quality of this article.

The first and third authors are supported by National Natural Science Foundation of China (Nos. 12322109 and 12171485) and Science and Technology Innovation Program of Hunan Province (No. 2023RC3040). The second author is partially supported by NSF-DMS 2316952. The third author is partially supported by Hunan Provincial Innovation Foundation for Postgraduate (No. CX20240165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaosheng Feng.

Additional information

Communicated by Luis Garcia-Naranjo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Feng, Z. & Zhang, R. Global Phase Portraits of Separable Polynomial Rigid Systems with a Center. J Nonlinear Sci 35, 6 (2025). https://doi.org/10.1007/s00332-024-10104-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-024-10104-9

Keywords

Mathematics Subject Classification

Navigation