[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The Bifurcation and Multi-timescale Singularity Analysis of the AII Amacrine Cell Firing Activities in Retina

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

A well-established AII amacrine cell model linked to blinding retinal diseases demonstrates rhythmic bursting activity. This behavior potentially impedes the retinal and cortical responses essential for visual restoration. Consequently, understanding the dynamics of AII amacrine cell firing is critical. We expanded the study by incorporating a calcium ion channel into the original model, creating a refined eight-dimensional AII model. This enhancement allowed us to conduct an in-depth exploration of system behavior via bifurcation analysis and an extensive examination of multi-timescale singularities. We identified the parameter ranges that control the firing activities of the model through codimension-one and codimension-two bifurcation analyses of key parameters. Furthermore, our research revealed that introducing a balance equation determines a transition from regular spiking to bursting. Importantly, the orchestration of three-timescale spiking and bursting attractors is enabled by the universal unfolding of the winged cusp singularity. This study provides a comprehensive analysis of firing dynamics in a high-dimensional neuron model. The insights derived significantly advance our understanding the dynamical behaviors of AII amacrine cells and are promising for improving strategies for retinal pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Apollo, N., Grayden, D.B., Burkitt, A.N., Meffin, H., Kameneva, T.: Modeling intrinsic electrophysiology of AII amacrine cells: preliminary results. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6551–6554. IEEE (2013)

  • Av-Ron, E., Parnas, H., Segel, L.A.: A basic biophysical model for bursting neurons. Biol. Cybern. 69, 87–95 (1993)

    Article  Google Scholar 

  • Bertram, R., Rubin, J.E.: Multi-timescale systems and fast–slow analysis. Math. Biosci. 287, 105–121 (2017)

    Article  MathSciNet  Google Scholar 

  • Boos, R., Schneider, H., Wassle, H.: Voltage-and transmitter-gated currents of all-amacrine cells in a slice preparation of the rat retina. J. Neurosci. 13(7), 2874–2888 (1993)

    Article  Google Scholar 

  • Cembrowski, M.S., Logan, S.M., Tian, M., Jia, L., Li, W., Kath, W.L., Riecke, H., Singer, J.H.: The mechanisms of repetitive spike generation in an Axonless retinal interneuron. Cell Rep. 1(2), 155–166 (2012)

    Article  Google Scholar 

  • Choi, H., Zhang, L., Cembrowski, M.S., Sabottke, C.F., Markowitz, A.L., Butts, D.A., Kath, W.L., Singer, J.H., Riecke, H.: Intrinsic bursting of AII amacrine cells underlies oscillations in the rd1 mouse retina. J. Neurophysiol. 112(6), 1491–1504 (2014)

    Article  Google Scholar 

  • Dhamala, M., Jirsa, V.K., Ding, M.: Transitions to synchrony in coupled bursting neurons. Phys. Rev. Lett. 92(2), 028101 (2004)

    Article  Google Scholar 

  • Drion, G., Franci, A., Seutin, V., Sepulchre, R.: A novel phase portrait for neuronal excitability. PLoS ONE 7, 1–14 (2012)

    Article  Google Scholar 

  • Fohlmeister, J., Miller, R.: Impulse encoding mechanisms of ganglion cells in the tiger salamander retina. J. Neurophysiol. 78(4), 1935–1947 (1997)

    Article  Google Scholar 

  • Franci, A., Sepulchre, R.: A three-scale model of spatio-temporal bursting. SIAM J. Appl. Dyn. Syst. 15(4), 2143–2175 (2016)

    Article  MathSciNet  Google Scholar 

  • Franci, A., Drion, G., Sepulchre, R.: An organizing center in a planar model of neuronal excitability. SIAM J. Appl. Dyn. Syst. 11(4), 1698–1722 (2012)

    Article  MathSciNet  Google Scholar 

  • Franci, A., Drion, G., Seutin, V., Sepulchre, R.: A balance equation determines a switch in neuronal excitability. PLoS Comput. Biol. 9(5), e1003040 (2013)

    Article  Google Scholar 

  • Franci, A., Drion, G., Sepulchre, R.: Modeling the modulation of neuronal bursting: a singularity theory approach. SIAM J. Appl. Dyn. Syst. 13(2), 798–829 (2014)

    Article  MathSciNet  Google Scholar 

  • Golubitsky, M., Schaeffer, D.: Singularities and groups in bifurcation theory. Appl. Math. Sci. 51(1) (1984)

  • Golubitsky, M., Stewart, I., Schaeffer, D.G.: Singularities and Groups in Bifurcation Theory: Volume II, vol. 69. Springer, Berlin (2012)

    Google Scholar 

  • Grasman, J.: Asymptotic Methods for Relaxation Oscillations and Applications, vol. 63. Springer, Berlin (2012)

    Google Scholar 

  • Habermann, C.J., O’Brien, B.J., Wässle, H., Protti, D.A.: AII amacrine cells express l-type calcium channels at their output synapses. J. Neurosci. 23(17), 6904–6913 (2003)

    Article  Google Scholar 

  • Han, X., Xie, W.F., Fu, Z., Luo, W.: Nonlinear systems identification using dynamic multi-time scale neural networks. Neurocomputing 74(17), 3428–3439 (2011)

    Article  Google Scholar 

  • Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J Bifurc. Chaos 10(06), 1171–1266 (2000)

    Article  MathSciNet  Google Scholar 

  • Izhikevich, E.M., Hoppensteadt, F.: Classification of bursting mappings. Int. J. Bifurc. Chaos 14(11), 3847–3854 (2004)

    Article  MathSciNet  Google Scholar 

  • Izhikevich, E.M., Desai, N.S., Walcott, E.C., Hoppensteadt, F.C.: Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci. 26(3), 161–167 (2003)

    Article  Google Scholar 

  • Jia, B., Gu, H., Li, L., Zhao, X.: Dynamics of period-doubling bifurcation to chaos in the spontaneous neural firing patterns. Cognit. Neurodyn. 6, 89–106 (2012)

    Article  Google Scholar 

  • Kuznetsov, Y.A., Kuznetsov, I.A., Kuznetsov, Y.: Elements of Applied Bifurcation Theory, vol. 112. Springer, Berlin (1998)

    Google Scholar 

  • Lisman, J.E.: Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci. 20(1), 38–43 (1997)

    Article  Google Scholar 

  • Liu, C., Liu, X., Liu, S.: Bifurcation analysis of a Morris–Lecar neuron model. Biol. Cybern. 108, 75–84 (2014)

    Article  MathSciNet  Google Scholar 

  • Mishchenko, E.: Differential Equations with Small Parameters and Relaxation Oscillations, vol. 13. Springer, Berlin (2013)

    Google Scholar 

  • Murphy, G.J., Rieke, F.: Network variability limits stimulus-evoked spike timing precision in retinal ganglion cells. Neuron 52(3), 511–524 (2006)

    Article  Google Scholar 

  • Nelson, R., Kolb, H.: AII amacrine cells: intrinsic signal processing in the rod pathway of the mammalian retina. Vis. Neurosci. 18(2), 247–255 (2001)

    Google Scholar 

  • Pereira, T., Baptista, M., Kurths, J.: Multi-time-scale synchronization and information processing in bursting neuron networks. Eur. Phys. J. Spec. Top. 146(1), 155–168 (2007)

    Article  Google Scholar 

  • Rinzel, J.: Bursting oscillations in an excitable membrane model. In: Ordinary and Partial Differential Equations: Proceedings of the Eighth Conference Held at Dundee, Scotland, June 25–29, 1984, pp. 304–316. Springer (2006)

  • Roberts, K.L., Rubin, J.E., Wechselberger, M.: Averaging, folded singularities, and torus canards: explaining transitions between bursting and spiking in a coupled neuron model. SIAM J. Appl. Dyn. Syst. 14(4), 1808–1844 (2015)

    Article  MathSciNet  Google Scholar 

  • Seydel, R.: Practical Bifurcation and Stability Analysis, vol. 5. Springer, Berlin (2009)

    Google Scholar 

  • Sherman, A., Rinzel, J.: Rhythmogenic effects of weak electrotonic coupling in neuronal models. Proc. Natl. Acad. Sci. 89(6), 2471–2474 (1992)

    Article  Google Scholar 

  • Smith, R.G., Vardi, N.: Simulation of the AII amacrine cell of mammalian retina: functional consequences of electrical coupling and regenerative membrane properties. Vis. Neurosci. 12(5), 851–860 (1995)

    Article  Google Scholar 

  • Song, J., Liu, S., Wen, Q.: Geometric analysis of the spontaneous electrical activity in anterior pituitary corticotrophs. Chaos Solitons Fractals 161, 112305 (2022)

    Article  MathSciNet  Google Scholar 

  • Su, J., Rubin, J., Terman, D.: Effects of noise on elliptic bursters. Nonlinearity 17(1), 133 (2003)

    Article  MathSciNet  Google Scholar 

  • Terman, D.: Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J. Appl. Math. 51(5), 1418–1450 (1991)

    Article  MathSciNet  Google Scholar 

  • Vo, T., Bertram, R., Tabak, J., Wechselberger, M.: Mixed mode oscillations as a mechanism for pseudo-plateau bursting. J. Comput. Neurosci. 28, 443–458 (2010)

    Article  MathSciNet  Google Scholar 

  • Wang, H., Wang, S., Gu, Y., Yu, Y.: Hopf bifurcation analysis of a two-dimensional simplified Hodgkin–Huxley model. Mathematics 11(3), 717 (2023)

    Article  Google Scholar 

  • Wechselberger, M., Mitry, J., Rinzel, J.: Canard theory and excitability. In: Nonautonomous Dynamical Systems in the Life Sciences, pp. 89–132 (2013)

  • Wechselberger, M.: Geometric Singular Perturbation Theory Beyond the Standard Form, vol. 6. Springer, Berlin (2020)

    Google Scholar 

  • Yaru, L., Shenquan, L.: Characterizing mixed-mode oscillations shaped by canard and bifurcation structure in a three-dimensional cardiac cell model. Nonlinear Dyn. 103(2), 1–22 (2021)

    Google Scholar 

  • Zhao, X., Gu, H., Li, L.: Nonlinear mechanism for the enhanced bursting activities induced by excitatory autapse near subcritical Hopf bifurcation in Hodgkin–Huxley model. Cognit. Neurodyn. 14(5), 987–1001 (2020)

    Google Scholar 

  • Zhao, N., Song, J., Liu, S.: Multi-timescale analysis of midbrain dopamine neuronal firing activities. J. Theor. Biol. 556, 111310 (2023)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the anonymous referee for their careful review and invaluable suggestions, which have greatly enhanced the quality of this paper. They also acknowledge the partial support from the National Natural Science Foundation of China (Grant Nos. 11872183) and the China Scholarship Council (Grant Nos. 202306150098).

Author information

Authors and Affiliations

Authors

Contributions

Zhao was involved in conceptualization, methodology, and software, and wrote the main manuscript text. Song and He were responsible for software and data curation, and reviewed the manuscript. Liu reviewed and submitted the manuscript.

Corresponding author

Correspondence to Shenquan Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Jeff Moehlis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (zip 104 KB)

Appendices

Model Parameter Description

See Tables 1 and 2.

Table 1 Corresponding definitions and default values of parameters in the AII model
Table 2 Default values of the parameters in steady-state function

Correlation Verification of the Bifurcation Points

1.1 Hopf Bifurcation Points

The firing dynamics of system (1) are predominantly impacted by the Hopf bifurcation points situated in both the upper and lower branches of the bifurcation curve. We will focus on Hopf bifurcation point \(H_{1}\) to analyze the criticality of the point. To commence this analysis, we first reformulate system (1) as follows:

$$\begin{aligned} \begin{aligned} \dot{V}&=F_{1}(V,m_{\text {Na}}, h_{\text {Na}}, m_{\text {Ca}},m_{M}, m_{A},h_{A}^{1},h_{A}^{2}),\\ \dot{x}&=F_{i}(V,x), \quad x = m_{\text {Na}},h_{\text {Na}}, m_{\text {Ca}},m_{M},m_{A},h_{A}^{1},h_{A}^{2}\quad i=2,\ldots ,8,\\ \end{aligned} \end{aligned}$$
(18)

where

$$\begin{aligned} F_{1}=&\frac{1}{C_{m}}[I_{\text {inject}}-g_{\text {Na}}m_{\text {Na}}^{3}h_{\text {Na}} (V-E_{\text {Na}})-g_{\text {Ca}}m_{\text {Ca}} (V-E_{\text {Ca}})-g_{M}\\&m_{M} (V-E_{K})-g_{A}m_{A}[ch_{A}^{1}+ (1-c)h_{A}^{2}] (V-E_{K})-g_{L} (V-E_{L})],\\ F_{i}=&\frac{x_{\infty }-x}{\tau _{x}}, \quad x = m_{\text {Na}},h_{\text {Na}}, m_{\text {Ca}},m_{M},m_{A},\quad i=2,\ldots ,6,\\ F_{7}=&\frac{h_{A,\infty }-h_{A}^{1}}{\tau _{h_{A}^{1}}},\\ F_{8}=&\frac{h_{A,\infty }-h_{A}^{2}}{\tau _{h_{A}^{2}}}.\\ \end{aligned}$$

The Jacobian matrix of the above equation is

$$\begin{aligned} \begin{aligned} A&=\left( \begin{array}{llllllll} \frac{\partial F_{1}}{\partial V} &{} \frac{\partial F_{1}}{\partial m_{\text {Na}}} &{} \frac{\partial F_{1}}{\partial h_{\text {Na}}} &{} \frac{\partial F_{1}}{\partial m_{\text {Ca}}} &{} \frac{\partial F_{1}}{\partial m_{M}} &{} \frac{\partial F_{1}}{\partial m_{A}} &{} \frac{\partial F_{1}}{\partial h_{A}^{1}} &{} \frac{\partial F_{1}}{\partial h_{A}^{2}}\\ \frac{\partial F_{2}}{\partial V} &{} -100 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ \frac{\partial F_{3}}{\partial V} &{} 0 &{} -2 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ \frac{\partial F_{4}}{\partial V} &{} 0 &{} 0 &{} \frac{\partial F_{4}}{\partial m_{\text {Ca}}} &{} 0 &{} 0 &{} 0 &{} 0\\ \frac{\partial F_{5}}{\partial V} &{} 0 &{} 0 &{} 0 &{} -1/50 &{} 0 &{} 0 &{} 0\\ \frac{\partial F_{6}}{\partial V} &{} 0 &{} 0 &{} 0 &{} 0 &{} -1 &{} 0 &{} 0\\ \frac{\partial F_{7}}{\partial V} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \frac{\partial F_{7}}{\partial h_{A}^{1}} &{} 0\\ \frac{\partial F_{8}}{\partial V} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \frac{\partial F_{8}}{\partial h_{A}^{2}}\\ \end{array} \right) \\ \end{aligned} \end{aligned}$$
(19)

Given the intricacies of the model (1), we intentionally refrain from presenting comprehensive expressions to describe it in detail. When

\(g_{M}=g_{M}^{H_{1}}=0.01181~S/\) \(cm^{2}\), we have calculated the equilibrium of system (1) as \((V^{*},m_{\text {Na}}^{*},h_{\text {Na}}^{*},m_{\text {Ca}}^{*}\), \(m_{M}^{*},m_{A}^{*}, h_{A}^{1,*},h_{A}^{2,*})\)

\(=(-40.30491,0.82333,0.00126,0.99261,0.48101,0.01306,0.56482,0.56482)\). Concurrently, the Jacobian matrix at \(H_{1}\) is

$$\begin{aligned} \begin{aligned} \left( \begin{array}{llllllll} -8.396 &{} 366.405 &{} 10079.8 &{} 130.305 &{} -433.185 &{} -1657.96 &{} -22.053 &{} -16.126\\ 2.909 &{} -100 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ -0.009 &{} 0 &{} -2 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0.0001 &{} 0 &{} 0 &{} -0.056 &{} 0 &{} 0 &{} 0 &{} 0\\ 0.001 &{} 0 &{} 0 &{} 0 &{} -1/50 &{} 0 &{} 0 &{} 0\\ 0.002 &{} 0 &{} 0 &{} 0 &{} 0 &{} -1 &{} 0 &{} 0\\ -0.005 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -0.052 &{} 0\\ -0.001 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -0.01\\ \end{array} \right) \\ \end{aligned}\nonumber \\ \end{aligned}$$
(20)

Furthermore, by calculating the eigenvalues, we obtain a pair of complex conjugate eigenvalues \(\lambda \) and \(\bar{\lambda }\), where \(\lambda =i\omega \) and \(\omega =9.44707\). This result confirms that system (1) undergoes a Hopf bifurcation at \(H_{1}\). Subsequently, we employ the MatCont software package to compute the first Lyapunov coefficient, yielding a value of \(0.20826>0\). Thus, \(H_{1}\) represents a subcritical Hopf bifurcation point that generates an unstable limit cycle.

Similar analytical procedures can be applied to the other bifurcation points, as detailed in Table 3.

Table 3 Data of the codimension-one bifurcation

1.2 Generalized Hopf (Bautin) Points

Regarding the codimension-two bifurcation points, it is essential to highlight that generalized Hopf (Bautin) points, are the distinctive positions that satisfy specific conditions while ensuring the existence of a pair of purely imaginary eigenvalues. Detailed definitions and explanations of these points can be found in established literature (Kuznetsov et al. 1998). We calculate the bifurcation diagram using the Matcont software package. The relevant data of generalized Hopf (Bautin) points in the codimension-two bifurcation Fig. 8 are shown in Table 4.

Table 4 Data of the codimension-two bifurcation in \((g_{M},g_{\text {Ca}})\) plane

In the neighbor of Bautin bifurcation points \(GH_{i}(i=1,2)\), the local topology of the differential system (1) is equivalent to the following normalization form:

$$\begin{aligned} \begin{aligned} \dot{z}=&(\beta _{1}+i)z+\beta _{2}z|z|^{2}+sz|z|^{4}, \quad z\in \mathbb {C}^{1};\\ \dot{\xi }_{-}=&-\xi _{-}, \quad \xi _{-}\in \mathbb {R}^{2}, \end{aligned} \end{aligned}$$
(21)

where \(\beta _{1},\beta _{2}\in \mathbb {R}, s=\hbox {sign}(l_{2}))=+1\).

1.3 Transcritical Bifurcation Point

The fixed equation of system (3) satisfies

$$\begin{aligned} C_{m}\dot{V}&=I_{\text {inject}} - I_{\text {Na}} - I_{\text {Ca}} - I_{M} - I^{*}_{A} - I_{L}=0 ,\\ \dot{x}&=\frac{x_{\infty }-x}{\tau _{x}}=0, x = m_{\text {Na}}, h_{\text {Na}}, m_{\text {Ca}},m_{M}, m_{A},{h}_{A}^{1},\\ \end{aligned}$$

Simple calculation can obtain \(x=x_{\infty }(V), x = m_{\text {Na}}, h_{\text {Na}}, m_{\text {Ca}},m_{M}, m_{A},{h}_{A}^{1}\). Letting

$$\begin{aligned} \sum _{i} g_{i}m_{i,\infty }^{ai}h_{i,\infty }^{bi} (V-E_{i})&= g_{\text {Na}}m_{\text {Na},\infty }^{3}h_{\text {Na},\infty } (V-E_{\text {Na}})\\&\quad +g_{\text {Ca}}m_{\text {Ca},\infty } (V-E_{\text {Ca}})+g_{M}m_{M,\infty } (V-E_{K})\\&\quad +g_{A}m_{A,\infty }[ch_{A,\infty }^{1}+ (1-c)\bar{h}_{A}^{2}] (V-E_{K})\\&\quad +g_{L} (V-E_{L}), \end{aligned}$$

The associated resulting fixed point equation is

$$\begin{aligned} \begin{aligned} I_{\text {inject}} - \sum _{i} g_{i}m_{i,\infty }^{a_{i}}h_{i,\infty }^{b_{i}} (V-E_{i})=0, \end{aligned} \end{aligned}$$
(22)

Given the bifurcation parameter \(g_{\text {Ca}}\in \{g_{i},E_{i}\}_{i\in I}\), there are exists a solution \( (V,g_{\text {Ca}})= (V_{c},g_{\text {Cac}})\) satisfying the two degeneracy conditions (5) and (6). Then solve the fixed point equation (22), the following result can be obtained:

$$\begin{aligned} I_{\text {inject}}^{c}=&\sum _{i} g_{i}m_{i,\infty }^{a_{i}} (V_{c})h_{i,\infty }^{b_{i}} (V_{c}) ( (V_{c})-E_{i}), \end{aligned}$$

and the transcritical bifurcation occurs at this critical condition in system (1) (Franci et al. 2012, 2013).

Let \(V_{1}=V+V_{c}, x_{c}=-(x_{\infty }-x)\), and continue to denote \(V_{1}, x_{c}\) imply as Vx. Then, we linearize system (3) in the equilibrium \(V_{c},x_{\infty }\). The center space \(E_{c}\) associated with the degeneracy conditions (5) and (6) is spanned by the vector

$$\begin{aligned} \vec {v}_{c}= (1,\vec {k}), \qquad \quad ~ \vec {k}:=[k_{x}], \qquad \quad ~ k_{x}:=\frac{\partial x_{\infty }}{\partial V}\bigg |_{V=V_{c}}, \end{aligned}$$

where k is the vector whose elements are the slopes of the (in)activation functions of the gating variables calculated at \(V=V_{c}\). The associated center manifold \(\mathbb {M}_{c}\) is exponentially attractive. Because the remaining nonzero eigenvalues of the Jacobian (4) are all negative when (5) and (6) are satisfied.

For the first order in \(V_{1}-V_{c}\), the dynamics on \(\mathbb {M}_{c}\) is given by:

$$\begin{aligned} \begin{aligned} C_{m}\dot{V_{1}}=- I_{\text {Na}}^{\star } - I_{\text {Ca}}^{\star } - I_{M}^{\star } - I^{\star }_{A} - I_{L} -I_{\text {inject}}^{c}+I_{\text {inject}} =0,\\ \end{aligned} \end{aligned}$$
(23)

where

$$\begin{aligned} I_{\text {Na}}^{\star }&=g_{\text {Na}} (m_{\text {Na},\infty } (V_{c})+k_{m_{\text {Na}}} (V_{1}-V_{c}))^{3} (h_{\text {Na},\infty } (V_{c})+k_{h_{\text {Na}}} (V_{1}-V_{c})) (V_{1}-E_{\text {Na}}),\\ I_{\text {Ca}}^{\star }&=g_{\text {Ca}} (m_{\text {Ca},\infty } (V_{c})+k_{m_{\text {Ca}}} (V_{1}-V_{c})) (V_{1}-E_{\text {Ca}}),\\ I_{M}^{\star }&=g_{M} (m_{M,\infty } (V_{c})+k_{m_{M}} (V_{1}-V_{c})) (V_{1}-E_{K}), \\ I_{A}^{\star }&=g_{A} (m_{A,\infty } (V_{c})+k_{m_{A}} (V_{1}-V_{c}))[c (h_{A,\infty }^{1} (V_{c})+k_{h_{A}^{1}} (V_{1}-V_{c}))+ (1-c)\bar{h}_{A}^{2}]\\&~~~ (V_{1}-E_{K}).\\ \end{aligned}$$

Through affine reparameterization, the stimulus current was varied as follows:

$$\begin{aligned} \bar{g}_{\text {Ca}}&=g_{\text {Ca}},\\ \bar{I}_{\text {inject}}&=I_{\text {inject}}^{c}-\frac{\partial \dot{V}}{\partial g_{\text {Ca}}}\bigg |_{\begin{array}{c} g_{\text {Ca}}=g_{\text {Cac}}\\ V_{1}=V_{c} \end{array}} (g_{\text {Ca}}-g_{\text {Cac}}). \end{aligned}$$

Then, we verified that the center manifold dynamics satisfy

$$\begin{aligned} \dot{V_{1}}\bigg |_{\begin{array}{c} g_{\text {Ca}}=g_{\text {Cac}}\\ V_{1}=V_{c} \end{array}}=\frac{\partial \dot{V_{1}}}{\partial V_{1}}\bigg |_{\begin{array}{c} g_{\text {Ca}}=g_{\text {Cac}}\\ V_{1}=V_{c} \end{array}}=\frac{\partial \dot{V_{1}}}{\partial \bar{g}_{\text {Ca}}}\bigg |_{\begin{array}{c} g_{\text {Ca}}=g_{\text {Cac}}\\ V_{1}=V_{c} \end{array}}=0, \end{aligned}$$

which corresponds to the defining condition of a transcritical bifurcation (Seydel 2009).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, N., Song, J., He, K. et al. The Bifurcation and Multi-timescale Singularity Analysis of the AII Amacrine Cell Firing Activities in Retina. J Nonlinear Sci 34, 93 (2024). https://doi.org/10.1007/s00332-024-10074-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-024-10074-y

Keywords

Mathematics Subject Classification

Navigation