Abstract
Exact variational integrators were exposed in the context of Lagrangian mechanics in Marsden and West (2001). These integrators sample the trajectories of holonomic mechanical systems and are useful for developing practical mechanical integrators. This paper introduces an exact variational integrator for Hamel’s equations, which are interpreted as a noncanonical form of Hamilton’s equations. This exact Hamel integrator is then adopted for a systematic construction of low-order constraint-preserving integrators for nonholonomic mechanical systems.
Similar content being viewed by others
Data Availability Statement
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.
Change history
15 February 2023
A Correction to this paper has been published: https://doi.org/10.1007/s00332-023-09890-5
References
An, Z., Gao, S., Shi, D., Zenkov, D.V.: A variational integrator for the Chaplygin–Timoshenko Sleigh. J. Nonlinear Sci. 30, 1381–1419 (2020)
Arnold, V.I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, vol. 60, 2nd edn. Springer, New York (1989)
Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics, 3rd edn. Springer, Berlin (2006)
Bain, M., Wu, B., Zenkov, D.V.: On Hamel’s Integrators, unpublished (2022)
Ball, K. R.: Structure Preserving Integrators and Hamel’s Equations, Ph.D. thesis, North Carolina State University (2013)
Ball, K.R., Zenkov, D.V.: Hamel’s formalism and variational integrators. In: Chang, D.E., Holm, D.D., Patrick, G., Ratiu, T. (eds.) Geometry, Mechanics, and Dynamics: The Legacy of Jerry Marsden. Fields Institute Communications, vol. 73, pp. 477–506. Springer, New York (2015)
Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.: Nonholonomic mechanical systems with symmetry. Arch. Rational Mech. Anal. 136, 21–99 (1996)
Bloch, A.M., Marsden, J.E., Zenkov, D.V.: Quasivelocities and symmetries in nonholonomic systems. Dyn. Syst. Int. J. 24, 187–222 (2009)
Boltzmann, L.: Über die From der Lagrangerchen Gleichungen für nichtholonome generalisierte Koordinaten. Sitzungsberichte der Mathematisch-Naturwissenschaftliche Akademie der Wissenschaften zu Wien CXI, 1603–1614 (1902)
Bou-Rabee, N., Marsden, J.E.: Hamilton–Pontryagin integrators on Lie Groups Part I: introduction and structure-preserving properties. Found. Comput. Math. 9, 197–219 (2009)
Chaplygin, S.A.: On the rolling of a ball on a horizontal plane. Mat. Sbornik 24, 139–168 (1903)
Chetaev, N.G.: On Gauss’ principle. Izv. Fiz-Mat. Obsc. Kazan. Univ. Ser. 3 6, 68–71 (1932–1933). (Russian)
Chetaev, N.G.: Theoretical Mechanics. Springer, New York (1989)
Cortés, J., Martínez, S.: Nonholonomic integrators. Nonlinearity 14, 1365–1392 (2001)
Euler, L.: Decouverte d’un nouveau principe de Mecanique. Mémoires de l’académie des sciences de Berlin 6, 185–217 (1752)
Euler, L.: Principes généraux de l’état d’équilibre des fluides. Mémoires de l’académie des sciences de Berlin 11, 217–273 (1757a)
Euler, L.: Principes généraux du mouvement des fluides. Mémoires de l’académie des sciences de Berlin 11, 274–315 (1757b)
Fedorov, Yu.N.: A discretization of the nonoholonomic Chaplygin sphere problem. SIGMA 3, 044 (2007)
Fedorov, Yu.N., Zenkov, D.V.: Discrete nonholonomic LL systems on Lie groups. Nonlinearity 18, 2211–2241 (2005)
Fedorov, Y.N., Zenkov, D.V.: Dynamics of the discrete Chaplygin Sleigh. Disc. Cont. Dyn. Syst. (extended volume), 258–267 (2005b)
Hamel, G.: Die Lagrange-Eulersche Gleichungen der Mechanik. Z. Math. Phys. 50, 1–57 (1904)
Hamilton, W.R.: On a general method in dynamics, part I. Philos. Trans. R. Soc. Lond. 124, 247–308 (1834)
Hamilton, W.R.: On a general method in dynamics, part II. Philos. Trans. R. Soc. Lond. 125, 95–144 (1835)
Holm, D.: Geometric Mechanics, Part II: Rotating, Translating, and Rolling, 2nd edn. Imperial College Press, London (2011)
Kobilarov, M., Marsden, J.E., Sukhatme, G.S.: Geometric discretization of nonholonomic systems with symmetries. Discret. Contin. Dyn. Syst. Ser. S 3, 61–84 (2010)
Kozlov, V.V.: Realization of nonintegrable constraints in classical mechanics. Sov. Phys. Dokl. 28, 735–737 (1983)
Kozlov, V.V.: The problem of realizing constraints in dynamics. J. Appl. Math. Mech. 56, 594–600 (1992)
Lagrange, J.L.: Mécanique Analytique. Chez la Veuve Desaint, Paris (1788)
Lall, S., West, M.: Discrete variational Hamiltonian mechanics. J. Phys. A Math. Gen. 39, 5509–5519 (2006)
Leok, M., Zhang, J.: Discrete Hamiltonian variational integrators. IMA J. Numer. Anal. 31, 1497–1532 (2011)
Lynch, C., Zenkov, D.: Stability of stationary motions of discrete-time nonholonomic systems. In: Kozlov, V.V., Vassilyev, S.N., Karapetyan, A.V., Krasovskiy, N.N., Tkhai, V.N., Chernousko, F.L. (eds.) Problems of Analytical Mechanics and Stability Theory. Collection of Papers Dedicated to the Memory of Academician Valentin V. Rumyantsev, Fizmatlit, Moscow, pp. 259–271 (2009). ((Russian))
Ma, Z., Rowley, C.: Lie-Poisson integrators: a Hamiltonian, variational approach. Int. J. Numer. Methods Eng. 82, 1609–1644 (2010)
Maggi, G.A.: Di alcune nuove forma della equazioni della dinamica aplicabile ai sistemi anolonomi. Atti della Reale Accademia Nozionale dei Lincei, Rendiconti Classe fisiche e mathematiche, Ser. 5(10), 287–291 (1901)
Marsden, J.E.: Lectures on Mechanics. London Mathematical Society Lecture Note Series, vol. 174. Cambridge University Press, Cambridge (1992)
Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Texts in Appl. Math., vol. 17, 2nd edn. Springer, New York (1999)
Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)
Neimark, Ju.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems. Translations of Mathematical Monographs, vol. 33. AMS, Providence (1972)
Poincaré, H.: Sur une forme nouvelle des équations de la mécanique. C.R. Acad. Sci. 132, 369–371 (1901)
Shi, D., Berchenko-Kogan, Y., Zenkov, D.V., Bloch, A.M.: Hamel’s formalism for infinite-dimensional mechanical systems. J. Nonlinear Sci. 27, 241–283 (2017)
Suslov, G.K.: Theoretical Mechanics, 3rd edn. GITTL, Moscow-Leningrad (1946)
Volterra, V.: Sopra una classe di equazioni dinamiche. Sulla integraizione di una classe di equazioni dinamiche, Atti della Reale Accademia della Scienze di Torino 33, 451 (1898)
Wang, L., An, Z., Shi, D.: Hamel’s field variational integrator for geometrically exact beam. Acta Scientiarum Naturalium Universitatis Pekinensis 52, 692–698 (2016). ((Chinese))
Zenkov, D.V., Leok, M., Bloch, A.M.: Hamel’s formalism and variational integrators on a sphere. Proc. CDC 51, 7504–7510 (2012)
Acknowledgements
We would like to thank the reviewers for helpful remarks and Benliang Wang for assistance with simulations. The research of SG and DS was partially supported by NSFC Grants 12272037, 12232009, and 11872107. The research of DVZ was partially supported by NSF grants DMS-0908995 and DMS-1211454. DVZ would like to acknowledge support and hospitality of the Beijing Institute of Technology, where a part of this work was carried out.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Arash Yavari.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The original online version of this article was revised: Figure 1 has been updated.
Induced Variations and Discrete Hamel’s Equations
Induced Variations and Discrete Hamel’s Equations
Using the discrete kinematic equation (3.3), one can derive the induced variations \(\delta \xi _{k+\alpha }\) and the corresponding version of discrete Hamel’s equations as follows.
Taking a variation of (3.3) gives:
which implies
Next, using \(\delta x_k = \Psi _{x_k}\eta _k\) and taking a variation of the action sum (3.5), we obtain
where
Thus, \(\delta a_{\textrm{d}}=0\) for each variation with fixed ends if and only if the equations
hold.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gao, S., Shi, D. & Zenkov, D.V. Discrete Hamiltonian Variational Mechanics and Hamel’s Integrators. J Nonlinear Sci 33, 26 (2023). https://doi.org/10.1007/s00332-022-09875-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00332-022-09875-w