[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Algebro-Geometric Quasi-Periodic Solutions to the Bogoyavlensky Lattice 2(3) Equations

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The theory of tetragonal curves is established and first applied to the study of algebro-geometric quasi-periodic solutions of discrete soliton equations. Using the zero-curvature equation and the discrete Lenard equation, we derive the hierarchy of Bogoyavlensky lattice 2(3) equations associated with a discrete \(4\times 4\) matrix spectral problem. Resorting to the characteristic polynomial of the Lax matrix of this hierarchy, we introduce a tetragonal curve and associated Riemann theta functions and explore the algebro-geometric properties of Baker–Akhiezer functions and a class of meromorphic functions on the tetragonal curve. The straightening out of various flows is precisely given through the Abel map and Abelian differentials. We finally obtain algebro-geometric quasi-periodic solutions of the entire hierarchy of Bogoyavlensky lattice 2(3) equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  • Agrotis, M.A., Damianou, P.A., Marmo, G.: A symplectic realization of the Volterra lattice. J. Phys. A 38(28), 6327–6334 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Babelon, O.: Continuum limit of the Volterra model, separation of variables and non-standard realizations of the Virasoro Poisson bracket. Commun. Math. Phys. 266(3), 819–862 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Belokolos, E.D., Bobenko, A.I., Enol’skii, V.Z., Its, A.R., Matveev, V.B.: Algebro-Geometric Approach to Nonlinear Integrable Equations. Springer, Berlin (1994)

    MATH  Google Scholar 

  • Bogoyavlensky, O.I.: Some constructions of integrable dynamical systems. Math. USSR Izv. 31(1), 47–75 (1988)

    Article  MathSciNet  Google Scholar 

  • Cherdanstev, IYu., Yamilov, R.I.: Master symmetries for differential–difference equations of the Volterra type. Phys. D 87(1–4), 140–144 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Deconinck, B., van Hoeij, M.: Computing Riemann matrices of algebraic curves. Phys. D 152–153, 28–46 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Dickson, R., Gesztesy, F., Unterkofler, K.: A new approach to the Boussinesq hierarchy. Math. Nachr. 198, 51–108 (1999a)

  • Dickson, R., Gesztesy, F., Unterkofler, K.: Algebro-geometric solutions of the Boussinesq hierarchy. Rev. Math. Phys. 11(7), 823–879 (1999b)

  • Dubrovin, B.A.: Inverse problem for periodic finite-zoned potentials in the theory of scattering. Funct. Anal. Appl. 9(1), 61–62 (1975)

    Article  MATH  Google Scholar 

  • Dubrovin, B.A., Matveev, V.B., Novikov, S.P.: Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties. Russ. Math. Surv. 31(1), 59–146 (1976)

    Article  MATH  Google Scholar 

  • Farkas, H.M., Kra, I.: Riemann Surfaces. Springer, New York (1992)

    Book  MATH  Google Scholar 

  • Geng, X.G., Cao, C.W.: Decomposition of the \((2 + 1)\)-dimensional Gardner equation and its quasi-periodic solutions. Nonlinearity 14(6), 1433–1452 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Geng, X.G., Zeng, X.: Quasi-periodic solutions of the Belov–Chaltikian lattice hierarchy. Rev. Math. Phys. 29(8), 1750025 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Geng, X.G., Dai, H.H., Zhu, J.Y.: Decomposition of the discrete Ablowitz–Ladik hierarchy. Stud. Appl. Math. 118(3), 281–312 (2007)

    Article  MathSciNet  Google Scholar 

  • Geng, X.G., Wu, L.H., He, G.L.: Algebro-geometric constructions of the modified Boussinesq flows and quasi-periodic solutions. Phys. D 240(16), 1262–1288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Geng, X.G., Wu, L.H., He, G.L.: Quasi-periodic solutions of the Kaup–Kupershmidt hierarchy. J. Nonlinear Sci. 23(4), 527–555 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Geng, X.G., Zhai, Y.Y., Dai, H.H.: Algebro-geometric solutions of the coupled modified Korteweg–de Vries hierarchy. Adv. Math. 263, 123–153 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Geng, X.G., Liu, H.: The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation. J. Nonlinear Sci. 28(2), 739–763 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Geng, X.G., Zeng, X., Wei, J.: The applications of the theory of trigonal curves to the discrete coupled nonlinear Schrödinger hierarchy. Ann. Henri Poincaré 20(8), 2585–2621 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Geng, X.G., Li, R.M., Xue, B.: A vector general nonlinear Schrödinger equation with \((m+n)\) components. J. Nonlinear Sci. 30(3), 991–1013 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Geng, X.G., Wang, K.D., Chen, M.M.: Long-time asymptotics for the spin-1 Gross–Pitaevskii equation. Commun. Math. Phys. 382(1), 585–611 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Gesztesy, F., Holden, H.: Soliton Equations and Their Algebro-Geometric Solutions, Volume II: (1+1)-Dimensional Discrete Models. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  • Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1994)

    Book  MATH  Google Scholar 

  • Hikami, K., Inoue, R.: The Hamiltonian structure of the Bogoyavlensky lattice. J. Phys. Soc. Jpn. 68(3), 776–783 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Its, A.R., Matveev, V.B.: Schrödinger operators with finite-gap spectrum and \(N\)-soliton solutions of the Korteweg–de Vries equation. Theor. Math. Phys. 23(1), 343–355 (1975)

    Article  Google Scholar 

  • Jia, M.X., Geng, X.G., Wei, J., Zhai, Y.Y., Liu, H.: Coupled discrete Sawada–Kotera equations and their explicit quasi-periodic solutions. Anal. Math. Phys. 11(4), 140 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Kac, M., van Moerbeke, P.: On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices. Adv. Math. 16, 160–169 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Krichever, I.M.: Integration of nonlinear equations by the methods of algebraic geometry. Funct. Anal. Appl. 11(1), 12–26 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Krichever, I.M.: Elliptic solutions of nonlinear integrable equations and related topics. Acta Appl. Math. 36(1–2), 7–25 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Krichever, I.M., Novikov, S.P.: Periodic and almost-periodic potentials in inverse problems. Inverse Probl. 15(6), R117–R144 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Lax, P.D.: Periodic solutions of the KdV equation. Comm. Pure Appl. Math. 28, 141–188 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, R.M., Geng, X.G.: On a vector long wave-short wave-type model. Stud. Appl. Math. 144(2), 164–184 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, W.X.: Trigonal curves and algebro-geometric solutions to soliton hierarchy I. Proc. R. Soc. A 473(2203), 20170232 (2017a)

  • Ma, W.X.: Trigonal curves and algebro-geometric solutions to soliton hierarchy II. Proc. R. Soc. A 473(2203), 20170233 (2017b)

  • Ma, W.X.: Riemann–Hilbert problems and soliton solutions of type \((\lambda ^*, -\lambda ^*)\) reduced nonlocal integrable mKdV hierarchies. Mathematics 10(6), 870 (2022a)

  • Ma, W.X.: Type \((-\lambda , -\lambda ^*)\) reduced nonlocal integrable mKdV equations and their soliton solutions. Appl. Math. Lett. 131, 108074 (2022b)

  • Ma, W.X.: Nonlocal integrable mKdV equations by two nonlocal reductions and their soliton solutions. J. Geom. Phys. 177, 104522 (2022c)

  • Ma, Y.C., Ablowitz, M.J.: The periodic cubic Schrödinger equation. Stud. Appl. Math. 65(2), 113–158 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, W.X., Xu, X.X.: A modified Toda spectral problem and its hierarchy of bi-Hamiltonian lattice equations. J. Phys. A 37(4), 1323–1336 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Matveev, V.B.: 30 years of finite-gap integration theory. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366(1867), 837–875 (2008)

    MathSciNet  MATH  Google Scholar 

  • McKean, H.P., van Moerbeke, P.: The spectrum of Hill’s equation. Invent. Math. 30(3), 217–274 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Miller, P.D., Ercolani, N.M., Krichever, I.M., Levermore, C.D.: Finite genus solutions to the Ablowitz–Ladik equations. Comm. Pure Appl. Math. 48(12), 1369–1440 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Miranda, R.: Algebraic Curves and Riemann Surfaces. American Mathematical Society, Providence (1995)

    Book  MATH  Google Scholar 

  • Narita, K.: Soliton solutions to extended Volterra equation. J. Phys. Soc. Jpn. 51(5), 1682–1685 (1982)

    Article  MathSciNet  Google Scholar 

  • Novikov, S.P.: A periodic problem for the Korteweg–de Vries equation. Funct. Anal. Appl. 8(3), 236–246 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons: The Inverse Scattering Method. Consultants Bureau, New York (1984)

    MATH  Google Scholar 

  • Previato, E.: Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation. Duke. Math. J 52(2), 329–377 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Quispel, G.R.W., Capel, H.W., Sahadevan, R.: Continuous symmetries of differential–difference equations: the Kac–van Moerbeke equation and Painlevé reduction. Phys. Lett. A 170(5), 379–383 (1992)

    Article  MathSciNet  Google Scholar 

  • Suris, Y.B.: The Problem of Integrable Discretization: Hamiltonian Approach. Birkhäuser Verlag, Basel (2003)

    Book  MATH  Google Scholar 

  • Svinin, A.K.: Reductions of the Volterra lattice. Phys. Lett. A 337(3), 197–202 (2005)

    Article  MATH  Google Scholar 

  • Volterra, V.: Leçons sur la Theórie Mathématique de la Lutte pour la vie. Gauthier-Villars, Paris (1936)

    MATH  Google Scholar 

  • Wang, J.P.: Recursion operator of the Narita–Itoh–Bogoyavlensky lattice. Stud. Appl. Math. 129(3), 309–327 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Wei, J., Geng, X.G., Zeng, X.: The Riemann theta function solutions for the hierarchy of Bogoyavlensky lattices. Trans. Am. Math. Soc. 371(2), 1483–1507 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, Y.T., Geng, X.G.: A finite-dimensional integrable system associated with the three-wave interaction equations. J. Math. Phys. 40(7), 3409–3430 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, H.Q., Zhu, Z.N.: Multisoliton, multipositon, multinegaton, and multiperiodic solutions of a coupled Volterra lattice system and their continuous limits. J. Math. Phys. 52(2), 023512 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11931017, 12271490).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianguo Geng.

Ethics declarations

Conflict of interest

No conflict of interests.

Additional information

Communicated by Robert Buckingham.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, M., Geng, X. & Wei, J. Algebro-Geometric Quasi-Periodic Solutions to the Bogoyavlensky Lattice 2(3) Equations. J Nonlinear Sci 32, 98 (2022). https://doi.org/10.1007/s00332-022-09858-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-022-09858-x

Keywords

Mathematics Subject Classification

Navigation