Abstract
The theory of tetragonal curves is established and first applied to the study of algebro-geometric quasi-periodic solutions of discrete soliton equations. Using the zero-curvature equation and the discrete Lenard equation, we derive the hierarchy of Bogoyavlensky lattice 2(3) equations associated with a discrete \(4\times 4\) matrix spectral problem. Resorting to the characteristic polynomial of the Lax matrix of this hierarchy, we introduce a tetragonal curve and associated Riemann theta functions and explore the algebro-geometric properties of Baker–Akhiezer functions and a class of meromorphic functions on the tetragonal curve. The straightening out of various flows is precisely given through the Abel map and Abelian differentials. We finally obtain algebro-geometric quasi-periodic solutions of the entire hierarchy of Bogoyavlensky lattice 2(3) equations.
Similar content being viewed by others
Data Availability
The data that support the findings of this study are available from the corresponding author upon request.
References
Agrotis, M.A., Damianou, P.A., Marmo, G.: A symplectic realization of the Volterra lattice. J. Phys. A 38(28), 6327–6334 (2005)
Babelon, O.: Continuum limit of the Volterra model, separation of variables and non-standard realizations of the Virasoro Poisson bracket. Commun. Math. Phys. 266(3), 819–862 (2006)
Belokolos, E.D., Bobenko, A.I., Enol’skii, V.Z., Its, A.R., Matveev, V.B.: Algebro-Geometric Approach to Nonlinear Integrable Equations. Springer, Berlin (1994)
Bogoyavlensky, O.I.: Some constructions of integrable dynamical systems. Math. USSR Izv. 31(1), 47–75 (1988)
Cherdanstev, IYu., Yamilov, R.I.: Master symmetries for differential–difference equations of the Volterra type. Phys. D 87(1–4), 140–144 (1995)
Deconinck, B., van Hoeij, M.: Computing Riemann matrices of algebraic curves. Phys. D 152–153, 28–46 (2001)
Dickson, R., Gesztesy, F., Unterkofler, K.: A new approach to the Boussinesq hierarchy. Math. Nachr. 198, 51–108 (1999a)
Dickson, R., Gesztesy, F., Unterkofler, K.: Algebro-geometric solutions of the Boussinesq hierarchy. Rev. Math. Phys. 11(7), 823–879 (1999b)
Dubrovin, B.A.: Inverse problem for periodic finite-zoned potentials in the theory of scattering. Funct. Anal. Appl. 9(1), 61–62 (1975)
Dubrovin, B.A., Matveev, V.B., Novikov, S.P.: Non-linear equations of Korteweg–de Vries type, finite-zone linear operators, and Abelian varieties. Russ. Math. Surv. 31(1), 59–146 (1976)
Farkas, H.M., Kra, I.: Riemann Surfaces. Springer, New York (1992)
Geng, X.G., Cao, C.W.: Decomposition of the \((2 + 1)\)-dimensional Gardner equation and its quasi-periodic solutions. Nonlinearity 14(6), 1433–1452 (2001)
Geng, X.G., Zeng, X.: Quasi-periodic solutions of the Belov–Chaltikian lattice hierarchy. Rev. Math. Phys. 29(8), 1750025 (2017)
Geng, X.G., Dai, H.H., Zhu, J.Y.: Decomposition of the discrete Ablowitz–Ladik hierarchy. Stud. Appl. Math. 118(3), 281–312 (2007)
Geng, X.G., Wu, L.H., He, G.L.: Algebro-geometric constructions of the modified Boussinesq flows and quasi-periodic solutions. Phys. D 240(16), 1262–1288 (2011)
Geng, X.G., Wu, L.H., He, G.L.: Quasi-periodic solutions of the Kaup–Kupershmidt hierarchy. J. Nonlinear Sci. 23(4), 527–555 (2013)
Geng, X.G., Zhai, Y.Y., Dai, H.H.: Algebro-geometric solutions of the coupled modified Korteweg–de Vries hierarchy. Adv. Math. 263, 123–153 (2014)
Geng, X.G., Liu, H.: The nonlinear steepest descent method to long-time asymptotics of the coupled nonlinear Schrödinger equation. J. Nonlinear Sci. 28(2), 739–763 (2018)
Geng, X.G., Zeng, X., Wei, J.: The applications of the theory of trigonal curves to the discrete coupled nonlinear Schrödinger hierarchy. Ann. Henri Poincaré 20(8), 2585–2621 (2019)
Geng, X.G., Li, R.M., Xue, B.: A vector general nonlinear Schrödinger equation with \((m+n)\) components. J. Nonlinear Sci. 30(3), 991–1013 (2020)
Geng, X.G., Wang, K.D., Chen, M.M.: Long-time asymptotics for the spin-1 Gross–Pitaevskii equation. Commun. Math. Phys. 382(1), 585–611 (2021)
Gesztesy, F., Holden, H.: Soliton Equations and Their Algebro-Geometric Solutions, Volume II: (1+1)-Dimensional Discrete Models. Cambridge University Press, Cambridge (2008)
Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1994)
Hikami, K., Inoue, R.: The Hamiltonian structure of the Bogoyavlensky lattice. J. Phys. Soc. Jpn. 68(3), 776–783 (1999)
Its, A.R., Matveev, V.B.: Schrödinger operators with finite-gap spectrum and \(N\)-soliton solutions of the Korteweg–de Vries equation. Theor. Math. Phys. 23(1), 343–355 (1975)
Jia, M.X., Geng, X.G., Wei, J., Zhai, Y.Y., Liu, H.: Coupled discrete Sawada–Kotera equations and their explicit quasi-periodic solutions. Anal. Math. Phys. 11(4), 140 (2021)
Kac, M., van Moerbeke, P.: On an explicitly soluble system of nonlinear differential equations related to certain Toda lattices. Adv. Math. 16, 160–169 (1975)
Krichever, I.M.: Integration of nonlinear equations by the methods of algebraic geometry. Funct. Anal. Appl. 11(1), 12–26 (1977)
Krichever, I.M.: Elliptic solutions of nonlinear integrable equations and related topics. Acta Appl. Math. 36(1–2), 7–25 (1994)
Krichever, I.M., Novikov, S.P.: Periodic and almost-periodic potentials in inverse problems. Inverse Probl. 15(6), R117–R144 (1999)
Lax, P.D.: Periodic solutions of the KdV equation. Comm. Pure Appl. Math. 28, 141–188 (1975)
Li, R.M., Geng, X.G.: On a vector long wave-short wave-type model. Stud. Appl. Math. 144(2), 164–184 (2020)
Ma, W.X.: Trigonal curves and algebro-geometric solutions to soliton hierarchy I. Proc. R. Soc. A 473(2203), 20170232 (2017a)
Ma, W.X.: Trigonal curves and algebro-geometric solutions to soliton hierarchy II. Proc. R. Soc. A 473(2203), 20170233 (2017b)
Ma, W.X.: Riemann–Hilbert problems and soliton solutions of type \((\lambda ^*, -\lambda ^*)\) reduced nonlocal integrable mKdV hierarchies. Mathematics 10(6), 870 (2022a)
Ma, W.X.: Type \((-\lambda , -\lambda ^*)\) reduced nonlocal integrable mKdV equations and their soliton solutions. Appl. Math. Lett. 131, 108074 (2022b)
Ma, W.X.: Nonlocal integrable mKdV equations by two nonlocal reductions and their soliton solutions. J. Geom. Phys. 177, 104522 (2022c)
Ma, Y.C., Ablowitz, M.J.: The periodic cubic Schrödinger equation. Stud. Appl. Math. 65(2), 113–158 (1981)
Ma, W.X., Xu, X.X.: A modified Toda spectral problem and its hierarchy of bi-Hamiltonian lattice equations. J. Phys. A 37(4), 1323–1336 (2004)
Matveev, V.B.: 30 years of finite-gap integration theory. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 366(1867), 837–875 (2008)
McKean, H.P., van Moerbeke, P.: The spectrum of Hill’s equation. Invent. Math. 30(3), 217–274 (1975)
Miller, P.D., Ercolani, N.M., Krichever, I.M., Levermore, C.D.: Finite genus solutions to the Ablowitz–Ladik equations. Comm. Pure Appl. Math. 48(12), 1369–1440 (1995)
Miranda, R.: Algebraic Curves and Riemann Surfaces. American Mathematical Society, Providence (1995)
Narita, K.: Soliton solutions to extended Volterra equation. J. Phys. Soc. Jpn. 51(5), 1682–1685 (1982)
Novikov, S.P.: A periodic problem for the Korteweg–de Vries equation. Funct. Anal. Appl. 8(3), 236–246 (1975)
Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons: The Inverse Scattering Method. Consultants Bureau, New York (1984)
Previato, E.: Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation. Duke. Math. J 52(2), 329–377 (1985)
Quispel, G.R.W., Capel, H.W., Sahadevan, R.: Continuous symmetries of differential–difference equations: the Kac–van Moerbeke equation and Painlevé reduction. Phys. Lett. A 170(5), 379–383 (1992)
Suris, Y.B.: The Problem of Integrable Discretization: Hamiltonian Approach. Birkhäuser Verlag, Basel (2003)
Svinin, A.K.: Reductions of the Volterra lattice. Phys. Lett. A 337(3), 197–202 (2005)
Volterra, V.: Leçons sur la Theórie Mathématique de la Lutte pour la vie. Gauthier-Villars, Paris (1936)
Wang, J.P.: Recursion operator of the Narita–Itoh–Bogoyavlensky lattice. Stud. Appl. Math. 129(3), 309–327 (2012)
Wei, J., Geng, X.G., Zeng, X.: The Riemann theta function solutions for the hierarchy of Bogoyavlensky lattices. Trans. Am. Math. Soc. 371(2), 1483–1507 (2019)
Wu, Y.T., Geng, X.G.: A finite-dimensional integrable system associated with the three-wave interaction equations. J. Math. Phys. 40(7), 3409–3430 (1999)
Zhao, H.Q., Zhu, Z.N.: Multisoliton, multipositon, multinegaton, and multiperiodic solutions of a coupled Volterra lattice system and their continuous limits. J. Math. Phys. 52(2), 023512 (2011)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant Nos. 11931017, 12271490).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
No conflict of interests.
Additional information
Communicated by Robert Buckingham.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jia, M., Geng, X. & Wei, J. Algebro-Geometric Quasi-Periodic Solutions to the Bogoyavlensky Lattice 2(3) Equations. J Nonlinear Sci 32, 98 (2022). https://doi.org/10.1007/s00332-022-09858-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00332-022-09858-x