[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Markov Selections for the Magnetohydrodynamics and the Hall-Magnetohydrodynamics Systems

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The magnetohydrodynamics system has found rich applications in applied sciences and has history of intense investigation by researchers including mathematicians. On the other hand, the Hall-magnetohydrodynamics system consists of the former system added by a Hall term which is very singular, and the mathematical development on this system has seen its significant progress only in the last several years. In short, the magnetohydrodynamics system, similarly to the Navier–Stokes equations, is semilinear, while the Hall-magnetohydrodynamics system is quasilinear. In this manuscript, we consider the three-dimensional magnetohydrodynamics, as well as the Hall-magnetohydrodynamics systems, and prove that they have Markov selections. In the case of the magnetohydrodynamics system, we prove furthermore a weak–strong uniqueness result and that any Markov solution has the strong Feller property for regular initial conditions. Consequently, it is deduced that if the magnetohydrodynamics system is well posed starting from one initial data, then it is well posed starting from any initial data, verifying a sharp contrast to the deterministic case in which the well posedness for all time with small initial data is well known. In the case of the Hall-magnetohydrodynamics system, we are also able to prove the weak–strong uniqueness result; however, the proof of strong Feller property seems to break down due to the singularity of the Hall term, about which we elaborate in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acheritogaray, M., Degond, P., Frouvelle, A., Liu, J.-G.: Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system. Kinet. Relat. Models 4, 901–918 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press, New York (2009)

    Book  MATH  Google Scholar 

  • Barbu, V., Da Prato, G.: Existence and ergodicity for the two-dimensional stochastic magneto-hydrodynamics equations. Appl. Math. Optim. 56, 145–168 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Batchelor, G.K.: On the spontaneous magnetic field in a conducting liquid in turbulent motion. Proc. R. Soc. Lond. Ser. A 201, 405–416 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  • Bricmont, J., Kupiainen, A., Lefevere, R.: Ergodicity of the 2D Navier–Stokes equations with random forcing. Commun. Math. Phys. 224, 65–81 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Campos, L.M.B.C.: On hydromagnetic waves in atmospheres with application to the sun. Theoret. Comput. Fluid Dyn. 10, 37–70 (1998)

    Article  MATH  Google Scholar 

  • Chae, D., Degond, P., Liu, J.-G.: Wel-posedness for Hall-magnetohydrodynamics. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 555–565 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Chae, D., Lee, J.: On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics. J. Differ. Equ. 256, 3835–3858 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Chae, D., Schonbek, M.: On the temporal decay for the Hall-magnetohydrodynamic equations. J. Differ. Equ. 255, 3971–3982 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Chae, D., Wan, R., Wu, J.: Local well-posedness for the Hall-MHD equations with fractional magnetic diffusion. J. Math. Fluid Mech. 17, 627–638 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Chae, D., Weng, S.: Singularity formation for the incompressible Hall-MHD equations without resistivity. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1009–1022 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Chae, D., Wolf, J.: On partial regularity for the 3D nonstationary Hall magnetohydrodynamics equations on the plane. SIAM J. Math. Anal. 48, 443–469 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Chandrasekhar, S.: The invariant theory of isotropic turbulence in magneto-hydrodynamics. Proc. R. Soc. Lond. Ser. A 204, 435–449 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  • Chueshov, I., Millet, A.: Stochastic 2D hydrodynamical type systems: well posedness and large deviations. Appl. Math. Optim. 61, 379–420 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Constantin, P., Glatt-Holtz, N., Vicol, V.: Unique ergodicity for fractionally dissipated, stochastically forced 2D Euler equations. Commun. Math. Phys. 330, 819–857 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Da Prato, G., Debussche, A.: Ergodicity for the 3D stochastic Navier–Stokes equations. J. Math. Pures Appl. 82, 877–947 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Da Prato, G., Debussche, A., Temam, R.: Stochastic Burgers’ equation. NoDEA Nonlinear Differ. Equ. Appl. 1, 389–402 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  • Debussche, A., Odasso, C.: Markov solutions for the 3D stochastic Navier–Stokes equations with state dependent noise. J. Evol. Equ. 6, 305–324 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Donato, S., Servidio, S., Dmitruk, P., Carbone, V., Shay, M.A., Cassak, P.A., Matthaeus, W.H.: Reconnection events in two-dimensional Hall magnetohydrodynamic turbulence. Phys. Plasmas 19, 092307 (2012)

    Article  Google Scholar 

  • Ferrario, B.: The Bénard problem with random perturbations: dissipativity and invariant measures. NoDEA Nonlinear Differ. Equ. Appl. 4, 101–121 (1997)

    Article  MATH  Google Scholar 

  • Ferrario, B.: Ergodic results for stochastic Navier–Stokes equation. Stoch. Rep. 60, 271–288 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Ferrario, B.: Stochastic Navier–Stokes equations: analysis of the noise to have a unique invariant measure. Annali di Matematica Pura ed Applicata CLXXVII, 331–347 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Flandoli, F.: Dissipativity and invariant measures for stochastic Navier–Stokes equations. NoDEA Nonlinear Differ. Equ. Appl. 1, 403–423 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Flandoli, F.: Irreducibility of the 3-D stochastic Navier–Stokes equations. J. Funct. Anal. 149, 160–177 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Flandoli, F.: An Introduction to 3D Stochastic Fluid Dynamics. In: Da Prato, G., Rückner, M. (eds.) SPDE in Hydrodynamic: Recent Progress and Prospects. Lecture Notes in Mathematics, vol. 1942, pp. 51–150. Springer, Berlin, Heidelberg (2008)

  • Flandoli, F., Maslowski, B.: Ergodicity of the 2-D Navier–Stokes equation under random perturbations. Commun. Math. Phys. 171, 119–141 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Flandoli, F., Romito, M.: Markov selections for the 3D stochastic Navier–Stokes equations. Probab. Theory Related Fields 140, 407–458 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Hairer, M., Mattingly, J.C.: Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic forcing. Ann. Math. 164, 993–1032 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Hairer, M., Mattingly, J.C.: Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations. Ann. Probab. 36, 2050–2091 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Homann, H., Grauer, R.: Bifurcation analysis of magnetic reconnection in Hall-MHD-systems. Phys. D 208, 59–72 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Iftimie, D.: The 3D Navier–Stokes equations seen as a perturbation of the 2D Navier–Stokes equations. Bull. Soc. Math. France 127, 473–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991)

    MATH  Google Scholar 

  • Krylov, N.V.: On the selection of a Markov process from a system of processes and the construction of quasi-diffusion processes. Math. USSR Izv. 7, 691–709 (1973)

    Article  MATH  Google Scholar 

  • Lee, J., Wu, M.-Y.: Ergodicity for the dissipative Boussinesq equations with random forcing. J. Stat. Phys. 117, 929–973 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Leray, J.: Essai sur le mouvement d’un fluide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  • Lighthill, M.J.: Studies on magneto-hydrodynamic waves and other anisotropic wave motions. Philos. Trans. R. Soc. Lond. Ser. A 252, 397–430 (1960)

  • Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  • Manna, U., Mohan, M.T.: Two-dimensional magneto-hydrodynamic system with jump processes: well posedness and invariant measures. Commun. Stoch. Anal. 7, 153–178 (2013)

    MathSciNet  Google Scholar 

  • Mattingly, J.C.: Exponential convergence for the stochastically forced Navier–Stokes equations and other partially dissipative dynamics. Commun. Math. Phys. 230, 421–462 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Mattingly, J.C., Pardoux, É.: Malliavin calculus for the stochastic 2D Navier–Stokes equation. Commun. Pure Appl. Math. LIX, 1742–1790 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Miura, H., Hori, D.: Hall effects on local structures in decaying MHD turbulence. J. Plasma Fusion Res. Ser. 8, 73–76 (2009)

    Google Scholar 

  • Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1991)

  • Romito, M.: Ergodicity of the finite dimensional approximation of the 3D Navier–Stokes equations forced by a degenerate noise. J. Stat. Phys. 114, 155–177 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Sango, M.: Magnetohydrodynamic turbulent flows: existence results. Phys. D. 239, 912–923 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36, 635–664 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Strauss, W.A.: On continuity of functions with values in various Banach spaces. Pacific J. Math. 19, 543–551 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  • Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, Berlin (1997)

    MATH  Google Scholar 

  • Sundar, P.: Stochastic magneto-hydrodynamic system perturbed by general noise. Commun. Stoch. Anal. 4, 253–269 (2010)

    MathSciNet  MATH  Google Scholar 

  • Wardle, M.: Star formation and the Hall effect. Astrophys. Space Sci. 292, 317–323 (2004)

    Article  Google Scholar 

  • Weinan, E., Liu, D.: Gibbsian dynamics and invariant measures for stochastic dissipative PDEs. J. Stat. Phys. 108, 1125–1156 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Weinan, E., Mattingly, J.C., Sinai, Y.: Gibbsian dynamics and ergodicity for the stochastically forced Navier–Stokes equation. Commun. Math. Phys. 224, 83–106 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Yamazaki, K.: Remarks on the global regularity of two-dimensional magnetohydrodynamics system with zero dissipation. Nonlinear Anal. 94, 194–205 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Yamazaki, K.: Stochastic Hall-magneto-hydrodynamics system in three and two and a half dimensions. J. Stat. Phys. 166, 368–397 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Yamazaki, K.: Smoothness of Malliavin derivatives and dissipativity of solution to two-dimensional micropolar fluid system. Random Oper. Stoch. Equ. 25, 131–153 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Yamazaki, K.: Gibbsian dynamics and ergodicity of stochastic micropolar fluid system. Appl. Math. Optim. (2017). https://doi.org/10.1007/s00245-017-9419-z

  • Yamazaki, K.: Irreducibility of the three, and two and a half dimensional Hall-magnetohydrodynamics system, submitted

  • Yamazaki, K.: Remarks on the three and two and a half dimensional Hall-magnetohydrodynamics system: deterministic and stochastic cases. Complex Anal. Synerg. (to appear)

  • Yamazaki, K., Mohan, M.T.: Well-posedness of Hall-magnetohydrodynamics system forced by Lévy noise. Stoch. PDE Anal. Comp., to appear. https://doi.org/10.1007/s40072-018-0129-6

Download references

Acknowledgements

The author is grateful to Dr. Manil T. Mohan for fruitful discussions. The author expresses deep gratitude to the editor and the anonymous referees for valuable suggestions and comments which improved the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Yamazaki.

Additional information

Communicated by Dr. Paul Newton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Definitions and Preliminaries Results

Here we leave general definitions and results on which the proofs throughout this manuscript relied. We let \({\mathcal {V}}, {\mathcal {H}}\) be separable Hilbert spaces such that \({\mathcal {V}} \subset {\mathcal {H}} \subset {\mathcal {V}}'\) with continuous injections. We fix

$$\begin{aligned} \Omega = C([0,\infty ), {\mathcal {V}}') \end{aligned}$$
(70)

with \({\mathcal {B}}\) the Borel \(\sigma \)-field on \(\Omega \). We define \(\xi _{t}: \Omega \mapsto {\mathcal {V}}'\) by \(\xi _{t}(\omega ) = \omega (t)\). We denote for all \(t \ge 0\),

$$\begin{aligned} \begin{aligned} {\mathcal {B}}_{t} \triangleq \sigma (\xi _{s})_{0 \le s \le t}, \,\, {\mathcal {B}}^{t} \triangleq \sigma (\xi _{s})_{t \le s}, \,\, \Omega _{t} \triangleq C([0,t]; {\mathcal {V}}'), \,\, \Omega ^{t} \triangleq C([t, \infty ); {\mathcal {V}}') \end{aligned} \end{aligned}$$

(cf. \({\mathcal {M}}_{t}, {\mathcal {M}}^{t}\) in Stroock and Varadhan 1997, p. 30, 139) and a mapping \(\Phi _{t}: \Omega \mapsto \Omega ^{t}\) for any \(t > 0\) as

$$\begin{aligned} \Phi _{t}(\omega )(s) \triangleq \omega (s-t)\quad \text {where } s \ge t. \end{aligned}$$
(71)

Lemma 6.1

(Flandoli and Romito 2008, Lemma 2.1; see also Strauss 1966) The sets \(L^{\infty }_{loc} ([0,\infty ); {\mathcal {H}}) \cap \Omega \) and \(L_{loc}^{2}([0,\infty ); {\mathcal {V}}) \cap \Omega \) are both Borel sets in \(\Omega \). Moreover,

$$\begin{aligned} L_{loc}^{\infty }([0,\infty ); {\mathcal {H}}) \cap \Omega = C([0,\infty ); {\mathcal {H}}_{\sigma } ) \cap \Omega \end{aligned}$$

where \({\mathcal {H}}_{\sigma }\) is \({\mathcal {H}}\) endowed with weak topology.

Definition 6.1

  1. (1)

    Since \(\Omega = C([0,\infty ); {\mathcal {V}}')\) is a Polish space and \({\mathcal {B}}_{t}\) is finitely generated, for any \(P \in Pr (\Omega )\) and \(t >0\), we may define, uniquely up to P-null sets, a regular conditional probability distribution (r.c.p.d.) \(\omega \mapsto P|_{{\mathcal {B}}_{t}}^{\omega }\) from \(\Omega \) to \(Pr(\Omega ^{t})\). In particular,

    $$\begin{aligned} \begin{aligned}&P |_{{\mathcal {B}}_{t}}^{\omega } (\{\xi _{t} = \omega (t)\}) = 1 \quad \forall \,\, \omega \in \Omega , \\&P(E_{1} \cap E_{2}) = \int _{E_{1}} P |_{{\mathcal {B}}_{t}}^{\omega } (E_{2}) P(d \omega ) \quad \forall \,\, E_{1} \in {\mathcal {B}}_{t}, E_{2} \in {\mathcal {B}}^{t}. \end{aligned} \end{aligned}$$
    (72)
  2. (2)

    (Flandoli and Romito 2008, Definition 2.3; see also Stroock and Varadhan 1997, Lemma 6.1.1, Lemma 6.1.2) Let \(P \in Pr (\Omega ), t > 0\) and \({\mathcal {B}}_{t}\)-measurable map \(Q: \Omega \mapsto Pr(\Omega ^{t})\) satisfy \(Q_{\omega } ( \xi _{t} = \omega (t) ) = 1\) for all \(\omega \in \Omega \). Then we denote by \(P \otimes _{t}Q\) the unique probability measure on \(\Omega \) such that

    1. (a)

      \(P \otimes _{t}Q\) and P agree on \({\mathcal {B}}_{t}\),

    2. (b)

      \((Q_{\omega })_{\omega \in \Omega }\) is a r.c.p.d. of \(P \otimes _{t}Q\) on \({\mathcal {B}}_{t}\).

Next, we give a definition of a.e. Markov property. We point out again that it was actually called an a.s. Markov property in Flandoli and Romito (2008, Definition 2.4); however, it was brought to the author’s attention by a referee that an a.e. Markov property would be more appropriate considering that the exceptional set is a set of t’s rather than \(\omega \)’s.

Definition 6.2

(Flandoli and Romito 2008, p. 413, Definition 2.4)

  1. (1)

    A family of probability measures (\(P_{x})_{x \in {\mathcal {H}}}\) is said to possess the Markov property if for all \(x \in {\mathcal {H}}\) and \(t \ge 0\), \(P_{x} |_{{\mathcal {B}}_{t}}^{\omega } = \Phi _{t} P_{\omega (t)}\) for \(P_{x}\)-almost every \(\omega \in \Omega \) where \(\Phi _{t}(\omega )(s) = \omega (s-t)\) for \(s \ge t\) as defined in (71).

  2. (2)

    Let \((P_{x})_{x \in {\mathcal {H}}}\) be a family of probability measures such that a mapping \(x \mapsto P_{x}\) is measurable from \({\mathcal {H}}\) to \(Pr(\Omega )\) and it satisfies \(P_{x} (C([0,\infty ); {\mathcal {H}}_{\sigma }) \cap \Omega ) = 1\) for all \(x \in {\mathcal {H}}\), where \({\mathcal {H}}_{\sigma }\) denotes \({\mathcal {H}}\) endowed with the weak topology. Then \((P_{x})_{x \in {\mathcal {H}}}\) is said to possess the a.e. Markov property if for all \(x \in {\mathcal {H}}\), there exists a set \(T \subset (0,\infty )\) with null Lebesgue measure such that \(P_{x} |_{{\mathcal {B}}_{t}}^{\omega } = \Phi _{t} P_{\omega (t)}\) for \(P_{x}\)-almost every \(\omega \in \Omega \), for all \(t \notin T\).

We recall from Sect. 3 that \(Comp(Pr(\Omega ))\) is the family of all compact subsets of \(Pr(\Omega )\).

Definition 6.3

(Flandoli and Romito 2008, Definition 2.5; see also Stroock and Varadhan 1997, Theorem 12.2.4) Let \({\mathcal {C}}: {\mathcal {H}} \mapsto Comp(Pr(\Omega ))\) be a map that is Borel measurable and for all \(x \in {\mathcal {H}}\) and \(P \in {\mathcal {C}}(x)\), \(P ( C([0,\infty ); {\mathcal {H}}_{\sigma } ) \cap \Omega ) = 1\). The family \(({\mathcal {C}}(x))_{x \in {\mathcal {H}}}\) is said to be almost surely pre-Markov if for all \(x \in {\mathcal {H}}, P \in {\mathcal {C}}(x)\), there exists \(T \in (0, \infty )\) of null Lebesgue measure such that for all \(t \notin T\), the following properties hold:

  1. (1)

    (disintegration) there exists \(N \in {\mathcal {B}}_{t}\) of null P-measure such that for all \(\omega \notin N\), it holds that \(\omega (t) \in {\mathcal {H}}\) and \(P |_{{\mathcal {B}}_{t}}^{\omega } \in \Phi _{t} {\mathcal {C}}(\omega (t))\),

  2. (2)

    (reconstruction) for all \({\mathcal {B}}_{t}\)-measurable map \(\omega \mapsto Q_{\omega }\) from \(\Omega \) to \(Pr(\Omega ^{t})\) for which there exists \(N \in {\mathcal {B}}_{t}\) of null P-measure such that for all \(\omega \notin N, \omega (t) \in {\mathcal {H}}\) and \(Q_{\omega } \in \Phi _{t} {\mathcal {C}}(\omega (t))\), it holds that \(P \otimes _{t} Q \in {\mathcal {C}}(x)\).

Lemma 6.2

(Flandoli and Romito 2008, Theorem 2.8; see also Stroock and Varadhan 1997, Theorem 12.2.3) Let \(({\mathcal {C}}(x))_{x \in {\mathcal {H}}}\) be an a.e. pre-Markov family with non-empty convex values. Then, there exists a measurable mapping \(x \mapsto P_{x}\) on \({\mathcal {H}}\) with values in \(Pr(\Omega )\) such that \(P_{x} \in {\mathcal {C}}(x)\) for all \(x \in {\mathcal {H}}\) and \((P_{x})_{x \in {\mathcal {H}}}\) has the a.e. Markov property.

Lemma 6.3

(Flandoli and Romito 2008, Theorem 2.12) Let \(({\mathcal {C}}(x))_{x \in {\mathcal {H}}}\) be a pre-Markov family with non-empty convex values. Then there exists a measurable mapping \(x \mapsto P_{x}\) in \({\mathcal {H}}\) with values in \(Pr(\Omega )\) such that \(P_{x} \in {\mathcal {C}}(x)\) for all \(x \in {\mathcal {H}}\) and \((P_{x})_{x \in {\mathcal {H}}}\) has the Markov property.

We let \(B_{b}({\mathcal {H}})\) be the Banach space of all bounded Borel measurable mappings, \((P_{x})_{x \in {\mathcal {H}}}\) be an a.e. Markov process on \((\Omega , {\mathcal {B}})\) and \(({\mathcal {P}}_{t})_{t \ge 0}\) the associated transition semigroup on \(B_{b}({\mathcal {H}})\) defined by

$$\begin{aligned} ({\mathcal {P}}_{t} \phi )(x) \triangleq {\mathbb {E}}^{P_{x}}[ \phi (\xi _{t})], \quad x \in {\mathcal {H}}, \phi \in B_{b}({\mathcal {H}}). \end{aligned}$$
(73)

The operator \({\mathcal {P}}_{t}: B_{b}({\mathcal {H}}) \mapsto B_{b}({\mathcal {H}})\) satisfies

  1. (1)

    \({\mathcal {P}}_{0} = Id\),

  2. (2)

    \(||{\mathcal {P}}_{t} ||_{{\mathcal {L}} (B_{b}({\mathcal {H}}), B_{b}({\mathcal {H}}))} = 1\),

but they are not semigroups as \({\mathcal {P}}_{t+s} = {\mathcal {P}}_{t} {\mathcal {P}}_{s}\) for all \(t \ge 0\) and almost every \(s \ge 0\). Let \({\mathcal {W}}\) be a Banach space where \({\mathcal {W}} \hookrightarrow {\mathcal {H}}\) continuously.

Definition 6.4

(Flandoli and Romito 2008, Definition 5.2) A semigroup \((\tilde{{\mathcal {P}}}_{t})_{t \ge 0}\) on \(B_{b}({\mathcal {H}})\) is \({\mathcal {W}}\)-strong Feller if for all \(t > 0, \psi \in B_{b}({\mathcal {H}})\), \(\tilde{{\mathcal {P}}}_{t} \psi \in C_{b}({\mathcal {W}})\), i.e. \(\tilde{{\mathcal {P}}}_{t} B_{b}({\mathcal {H}}) \subset C_{b}({\mathcal {W}})\).

Definition 6.5

(Flandoli and Romito 2008, Definition 5.3) A family \(({\tilde{P}}_{x})_{x \in {\mathcal {H}}}\) of probability measure on \((\Omega , {\mathcal {B}})\) is an a.s. \({\mathcal {W}}\)-Markov process if

  1. (1)

    \({\tilde{P}}_{x} (C([0,\infty ); {\mathcal {W}})) = 1\) for all \(x \in {\mathcal {W}}\),

  2. (2)

    for all \(t \ge 0\) and \(\phi \in B_{b}({\mathcal {H}})\), the mapping \(x \mapsto (\tilde{{\mathcal {P}}}_{t} \phi )(x) \triangleq {\mathbb {E}}^{{\tilde{P}}_{x}}[\phi (\xi _{t})]\) is Borel measurable,

  3. (3)

    for all \(t \ge 0\), and almost every \(s \ge 0\), \(\tilde{{\mathcal {P}}}_{t+s} \phi = \tilde{{\mathcal {P}}}_{t} \tilde{{\mathcal {P}}}_{s} \phi \) for all \(\phi \in B_{b}({\mathcal {H}})\).

Lemma 6.4

(Flandoli and Romito 2008, Theorem 5.4) Let \((P_{x})_{x \in {\mathcal {H}}}\) be an a.e. Markov process on \((\Omega , {\mathcal {B}})\) and for all \(R > 0\), \((P_{x}^{(R)})_{x \in {\mathcal {W}}}\) an a.s. \({\mathcal {W}}\)-Markov process on \((\Omega , {\mathcal {B}})\) as defined in Definition 6.5. Suppose for all \(\rho > 0,\) there exists \(R_{\rho } > 0\) and a random time \(\tau _{\rho }\) on \((\Omega , {\mathcal {B}})\) such that for all \(x \in {\mathcal {W}}\) such that \(||x ||_{{\mathcal {W}}} \le \rho \),

  1. (1)

    \(\lim _{\epsilon \rightarrow 0} P_{x+h}^{(R_{\rho })} (\tau _{\rho } \ge \epsilon ) = 1\) uniformly in \(h \in {\mathcal {W}}\) such that \(||h ||_{{\mathcal {W}}} \le 1\),

  2. (2)

    for all \(t \ge 0, \phi \in B_{b}({\mathcal {H}})\), \({\mathbb {E}}^{P_{x}^{(R_{\rho })}}[\phi (\xi _{t})1_{\{ \tau _{\rho } \ge t \}}] = {\mathbb {E}}^{P_{x}}[ \phi (\xi _{t}) 1_{\{ \tau _{\rho } \ge t \}}]\).

Then if \(({\mathcal {P}}_{t}^{(R)})_{t \ge 0}\) is \({\mathcal {W}}\)-strong Feller for all \(R > 0\), then \(({\mathcal {P}}_{t})_{t \ge 0}\) is \({\mathcal {W}}\)-strong Feller.

Definition 6.6

A Borel probability measure \(\mu \) on H is fully supported on \({\mathcal {W}}\) if \(\mu (U) > 0\) for all \(U \subset {\mathcal {W}}\).

Lemma 6.5

(Flandoli and Romito 2008, Proposition B.1) Given \({\mathbb {P}} \in Pr(\Omega )\), two continuous adapted processes \(\theta , \zeta : [0,\infty ) \times \Omega \mapsto {\mathbb {R}}\) and \(t_{0} \ge 0\), the following are equivalent:

  1. (1)

    \((\theta _{t}, {\mathcal {B}}_{t}, {\mathbb {P}})_{t \ge t_{0}}\) is a \({\mathbb {P}}\)-square-integrable martingale with quadratic variation \((\zeta _{t})_{t \ge t_{0}}\);

  2. (2)

    there exists a \({\mathbb {P}}\)-null set \(N \in {\mathcal {B}}_{t_{0}}\) such that for all \(\omega \notin N\), the process \((\theta _{t}, {\mathcal {B}}_{t}, {\mathbb {P}} |_{{\mathcal {B}}_{t}}^{\omega })_{t \ge t_{0}}\) is a \({\mathbb {P}}|_{{\mathcal {B}}_{t}}^{\omega }\)-square-integrable martingale with quadratic variation \((\zeta _{t})_{t \ge t_{0}}\) and \({\mathbb {E}}^{{\mathbb {P}}}[{\mathbb {E}}^{{\mathbb {P}} |_{{\mathcal {B}}_{t}}^{\cdot }} [ \zeta _{t} ]] < \infty \).

Lemma 6.6

(Flandoli and Romito 2008, Corollary B.3) Let \(\theta : [0,\infty ) \times \Omega \mapsto {\mathbb {R}}\) be an adapted left lower semicontinuous process and assume that \((\theta _{t}, {\mathcal {B}}_{t}, {\mathbb {P}})_{t \ge 0}\) be an a.e. super-martingale. Let \(T_{\theta }\) be the set of exceptional times of \(\theta \) and \([a,b] \subset [0,\infty )\) with \(a, b \notin T_{\theta }\). Moreover, suppose that \(\theta _{t} = \alpha _{t} - \beta _{t}\) where \(\alpha _{t}, \beta _{t}\) are both positive, and \(\beta _{t}\) is non-decreasing. Then

$$\begin{aligned} \lambda {\mathbb {P}} \left( \sup _{t \in [a,b]} \alpha _{t} \ge \lambda \right) \le 2({\mathbb {E}}^{{\mathbb {P}}} [\theta _{a}] + {\mathbb {E}}^{{\mathbb {P}}} [\theta _{b}^{-}] + {\mathbb {E}}^{{\mathbb {P}}} [\beta _{b}]) \end{aligned}$$

for any \(\lambda > 0\).

Lemma 6.7

(Flandoli and Romito 2008, Proposition B.4) Let \(\alpha , \beta : [0,\infty ) \times \Omega \mapsto {\mathbb {R}}_{+}\) be two adapted processes such that \(\beta \) is non-decreasing and \(\theta = \alpha - \beta \) is left lower semicontinuous. Given \({\mathbb {P}} \in Pr(\Omega )\) and \(t_{0} \ge 0\), the following are equivalent.

  1. (1)

    \((\theta _{t}, {\mathcal {B}}_{t}, {\mathbb {P}})_{t \ge t_{0}}\) is an a.e. super-martingale and for all \(t \ge t_{0}\), \({\mathbb {E}}^{{\mathbb {P}}}[\alpha _{t} + \beta _{t}] < \infty \),

  2. (2)

    there is a \({\mathbb {P}}\)-null set \(N \in {\mathcal {B}}_{t_{0}}\) such that for all \(\omega \notin N\), the process \((\theta _{t}, {\mathcal {B}}_{t}, {\mathbb {P}}|_{{\mathcal {B}}_{t_{0}}}^{\omega })_{t \ge t_{0}}\) is an a.e. super-martingale and for all \(t \ge t_{0}\),

    $$\begin{aligned} {\mathbb {E}}^{{\mathbb {P}} |_{{\mathcal {B}}_{t_{0}}}^{\omega }} [\alpha _{t}+ \beta _{t}]< \infty \text { and } {\mathbb {E}}^{{\mathbb {P}}} [ {\mathbb {E}}^{{\mathbb {P}} |_{{\mathcal {B}}_{t_{0}}}^{\cdot }}[ \alpha _{t} + \beta _{t} ]] < \infty . \end{aligned}$$

Lemma 6.8

(Flandoli and Romito 2008, Lemma D.2) For all \(\alpha \in {\mathbb {R}}_{+} \backslash \{\frac{1}{2}\}, B_{j}, j \in \{1,2,3,4\}\), maps \(D(A^{\theta (\alpha )}) \times D(A^{\theta (\alpha )})\) continuously to \(D(A^{\alpha - \frac{1}{4}})\) where \(\theta (\alpha )\) is defined in (15). If \(\alpha = \frac{1}{2}\), then \(B_{j}\) maps \(D(A^{\frac{3}{4}}) \times D(A^{\frac{3}{4}})\) continuously to \(D(A^{\frac{1}{4} - \epsilon })\) for any \(\epsilon > 0\).

It is worth pointing out that (Flandoli and Romito 2008, Lemma D.2) is in fact a special case of the following (Yamazaki 2014, Lemma 2.5), (Iftimie 1999, Theorem 1.1) in case \(\alpha < \frac{1}{2}\).

Lemma 6.9

(Yamazaki 2014, Lemma 2.5 for \(x \in {\mathbb {R}}^{N}\), also Iftimie 1999, Theorem 1.1 for \(x \in {\mathbb {T}}^{3}\)) Suppose that the spatial variable x is an element in \({\mathbb {R}}^{N}, N \in {\mathbb {N}}\). Let \(\sigma _{1}, \sigma _{2} < \frac{N}{2}\) satisfy \(\sigma _{1} + \sigma _{2} > 0\). Then there exists a constant \(c(\sigma _{1}, \sigma _{2}) > 0\) such that

$$\begin{aligned} ||fg||_{{\dot{H}}^{\sigma _{1} + \sigma _{2} - \frac{N}{2}}} \le c(\sigma _{1}, \sigma _{2}) ||f||_{{\dot{H}}^{\sigma _{1}}}||g||_{{\dot{H}}^{\sigma _{2}}} \end{aligned}$$

for all \(f \in {\dot{H}}^{\sigma _{1}}({\mathbb {R}}^{N})\), and \(g\in {\dot{H}}^{\sigma _{2}}({\mathbb {R}}^{N})\).

Indeed,

$$\begin{aligned} ||B_{j}(f,g) ||_{D(A^{\alpha - \frac{1}{4}})} \lesssim ||f \otimes g ||_{{\dot{H}}^{2\alpha + 2 - \frac{3}{2}}} \lesssim ||f ||_{D(A^{\theta (\alpha )})} ||g ||_{D(A^{\theta (\alpha )})} \end{aligned}$$

if \(\alpha < \frac{1}{2}\). Finally, we leave a key vector calculus identity that is not used for the NSE or the MHD system but is crucial for the HMHD system:

$$\begin{aligned} \Theta \times \Psi \cdot \Theta = 0 \quad \text { for any } \Theta , \Psi \in {\mathbb {R}}^{3}. \end{aligned}$$
(74)

Indeed, denoting components by \(\Theta = (\Theta _{1}, \Theta _{2}, \Theta _{3})\) and \(\Psi = (\Psi _{1}, \Psi _{2}, \Psi _{3})\), a direct computation shows

$$\begin{aligned} \Theta \times \Psi \cdot \Theta = (\Theta _{2} \Psi _{3} - \Theta _{3} \Psi _{2}) \Theta _{1} - (\Theta _{1} \Psi _{3} - \Theta _{3} \Psi _{1}) \Theta _{2} + (\Theta _{1} \Psi _{2} - \Theta _{2} \Psi _{1}) \Theta _{3} = 0. \end{aligned}$$

Appendix B: Proofs of Selected Results

1.1 Proof of Proposition 3.2

The purpose of this subsection is to record the proof of Proposition 3.2 for completeness; they are all standard results, and thus, we only sketch it. From the literature on the standard well-posedness results of the MHD system, it is well known that the proof in case of the NSE in Flandoli and Romito (2008) may be extended to that of the MHD system. We focus on the HMHD system here, the case in which taking zero Hall parameter leads to the MHD system as well.

The first inequality follows from Yamazaki (2017a, Proposition 3.1) by considering an additive noise therein. The second inequality is verified within the proof of Yamazaki (2017a, Proposition 3.5) by considering an additive noise therein. For the third inequality, we also refer to Yamazaki [2017a, (48)]. It is clear from Yamazaki (2017a) that \(P_{n}^{G}\) also satisfies the properties \([MP1], \ldots , [MP4]\), associated with (13b) [see in particular Yamazaki 2017a, Proposition 3.1 for [MP1], Yamazaki 2017a, Section 3.6 for [MP2], and Yamazaki 2017a, equation (18) for [MP3], [MP4]]. Finally, because the initial distribution for the Galerkin approximation is the projection of \(\mu _{0}\) onto \(H_{n}\), it is clear that the marginal of \(P_{n}^{G}\) at \(t = 0\) is \(\mu _{0}\) so that \(P_{n}^{G}\) also satisfies [MP5]. This completes the proof of Proposition 3.2.

1.2 Proof of Proposition 3.3

The purpose of this subsection is to record the proof of Proposition 3.3 for completeness; it is similar to that of Flandoli and Romito (2008, Lemma A.2) and thus we only sketch it for the case of the HMHD system. We take \(\phi =(\phi _{1}, \phi _{2}) \in C^{\infty }\) and set \(\Phi (t) \triangleq t |Q^{\frac{1}{2}} \phi |_{H}^{2}\) and \(\Phi _{n}(t) \triangleq t |Q_{n}^{\frac{1}{2}} \phi |_{H}^{2}\) where \(Q_{n}\) is the projection of \(Q = \begin{pmatrix} Q_{1}\\ Q_{2} \end{pmatrix}\) onto \(H_{n}\). Since \((P_{n}^{G})_{n \in {\mathbb {N}}}\) satisfies [MP2] for all \(n \in {\mathbb {N}}\) and \((P_{k_{n}}^{G})_{n \in {\mathbb {N}}}\) is its subsequence, by [MP2]

$$\begin{aligned} \begin{aligned} M_{t}^{\phi , k_{n}} \triangleq&\, \langle \xi _{t} - \xi _{0}, \phi \rangle + \int _{0}^{t} \langle \xi _{s}, A_{k_{n}} \phi \rangle \text {d}s\\&- \int _{0}^{t} \langle B_{k_{n}}(\xi _{s}, \phi ), \xi _{s}) \text {d}s + \epsilon \int _{0}^{t} \langle P_{H_{k_{n}}}((\nabla \times \xi _{2,s}) \times \xi _{2,s}), \nabla \times \phi _{2} \rangle \text {d}s \end{aligned} \end{aligned}$$

is square-integrable and \((M_{t}^{\phi , k_{n}}, {\mathcal {B}}_{t}^{HMHD}, P_{k_{n}}^{G})\) is a continuous martingale with a quadratic variation of \(\langle \langle M_{t}^{\phi ,k_{n}} \rangle \rangle = t |Q_{n}^{\frac{1}{2}} \phi |_{H}^{2} = \Phi _{n}(t).\) By Lévy martingale characterization theorem (e.g. Karatzas and Shreve 1991, Chapter 3, Theorem 3.16), \((M_{t}^{\phi , k_{n}})_{t \ge 0}\) is a Brownian motion. If we let \(0 \le s < t\) and \(E \in {\mathcal {B}}_{s}^{HMHD}\), then using that \(M_{t}^{\phi , k_{n}}\rightarrow M_{t}^{\phi }\) as \(n\rightarrow \infty \) for all \(\omega \in \Omega _{HMHD}\), and \(P_{k_{n}}^{G} \rightarrow P_{\infty }^{G}\) weakly in \({\mathcal {U}}\), we may deduce

$$\begin{aligned} \begin{aligned} {\mathbb {E}}^{P_{\infty }^{G}}[ 1_{E} ( M_{t}^{\phi } - M_{s}^{\phi })] = 0, \quad {\mathbb {E}}^{P_{\infty }^{G}}[ 1_{E} ((|M_{t}^{\phi } |^{2} - \Phi (t)) - (|M_{s}^{\phi } |^{2} - \Phi (s))) ] = 0. \end{aligned} \end{aligned}$$

This implies that \(P_{\infty }^{G}\) satisfies [MP2]; thus, the proof of Proposition 3.3 is complete.

1.3 Proof of Proposition 3.4

The purpose of this subsection is to record the proof of Proposition 3.4 for completeness; it is similar to that of Flandoli and Romito (2008, Lemma A.3), and thus, we only sketch it for the case of the HMHD system. We see that for any \(m \ge 2\),

$$\begin{aligned} \begin{aligned} {\mathbb {E}}^{P_{n}}[ |\xi _{t} |_{H}^{2m}] \le c_{m} + m(2m-1) \sigma ^{2} {\mathbb {E}}^{P_{n}} \left[ \int _{0}^{t} |\xi _{s} |_{H}^{2m-2} \text {d}s\right] \le c(t, \sigma ^{2}, c_{1}, \ldots , c_{m}) \end{aligned} \end{aligned}$$

where we used that \(P_{n}\) satisfies [MP4]. Similar application of [MP3] leads to

$$\begin{aligned} {\mathbb {E}}^{P_{n}}[ |\xi _{t} |_{H}^{2m}] \le c(t, \sigma ^{2}, c_{1}, \ldots , c_{m})\quad \text {and}\quad {\mathbb {E}}^{P_{n}}\left[ \int _{0}^{t} ||\xi _{s}||_{V}^{2} \text {d}s\right] \le c(t, \sigma ^{2}, c_{1}).\nonumber \\ \end{aligned}$$
(75)

Now for all \(T> 0, \lambda > 0\), we set

$$\begin{aligned} A_{T,\lambda } \triangleq \left\{ \xi : \sup _{t \in [0, T]}|\xi _{t} |_{H}^{2} + 2 \int _{0}^{t} ||\xi _{s} ||_{V}^{2} \text {d}s > \lambda \right\} ; \end{aligned}$$
(76)

it is open in \(\Omega _{HMHD}\) by semicontinuity in the topology of \(\Omega _{HMHD}\). Then writing \(\alpha _{t} \triangleq |\xi _{t} |_{H}^{2} + 2 \int _{0}^{t} ||\xi _{s} ||_{V}^{2} \text {d}s\), \(\beta _{t} \triangleq |\xi _{0} |_{H}^{2} + t \sigma ^{2}, a \triangleq 0, b \triangleq T\) and \(\theta _{t} \triangleq \alpha _{t} - \beta _{t}\), we obtain

$$\begin{aligned} \begin{aligned} \lambda P (A_{T,\lambda })\le \liminf _{n\rightarrow \infty } 2 {\mathbb {E}}^{P_{n}}\left[ |\xi _{t} |_{H}^{2} + 2 \int _{0}^{T} ||\xi _{s} ||_{V}^{2} \text {d}s\right] \le c(T, \sigma ^{2}, c_{1}) \end{aligned} \end{aligned}$$

by (76), Lemma 6.6 and (75). This implies that P satisfies [MP1].

Next, by hypothesis (1), \(P_{n} \rightarrow P\) weakly in \({\mathcal {U}}\) as \(n \rightarrow \infty \). This implies by Skorokhod’s theorem that there exists a probability space \((\Sigma , {\mathcal {G}}, P)\) and a sequence of \({\mathcal {U}}\)-valued random variables \(\{X_{n}\}, X\) on \(\Sigma \) such that \(X_{n} \rightarrow X\) in \({\mathcal {U}}\) as \(n\rightarrow \infty \)P-almost surely and \(X_{n}, X\) have laws denoted by \(P_{n}, P\), respectively. It follows that

$$\begin{aligned} \begin{aligned} {\mathbb {E}}^{P}[ |\xi _{t} |_{H}^{2}] = {\mathbb {E}}^{P}[|X(t) |_{H}^{2}] \le \liminf _{n\rightarrow \infty } {\mathbb {E}}^{P_{n}} [|\xi _{t} |_{H}^{2}] \le c(t,\sigma ^{2}, c_{1}) \end{aligned} \end{aligned}$$
(77)

by that \(X_{n} \rightarrow X\) in \({\mathcal {U}}\)P-almost surely and (75). Similarly

$$\begin{aligned} \begin{aligned} {\mathbb {E}}^{P}\left[ \int _{0}^{t} ||\xi _{s} ||_{V}^{2} \text {d}s\right]&= {\mathbb {E}}^{P}\left[ \int _{0}^{t} ||X(s) ||_{V}^{2} \text {d}s\right] \\&\le \liminf _{n\rightarrow \infty } {\mathbb {E}}^{P_{n}}\left[ \int _{0}^{t} ||\xi _{s} ||_{V}^{2} \text {d}s\right] \le c(t, \sigma ^{2} c_{1}) \end{aligned} \end{aligned}$$
(78)

by that \(X_{n} \rightarrow X\) in \({\mathcal {U}}\)P-almost surely as \(n\rightarrow \infty \), and (75). Thus, by (77), (78), (10), we see that \(E_{t}^{1}\) is P-integrable. To complete the proof that P satisfies [MP3], it suffices to show that \(E_{t}^{1}\) is an a.e. super-martingale, but this follows from Flandoli and Romito [2008, equation (A.4)]. Finally, the proof that P satisfies [MP4] is similar to that of [MP3].

1.4 Proof of Proposition 3.6

The purpose of this subsection is to leave the proof of Proposition 3.6 for completeness; it is similar to that of Flandoli and Romito (2008, Lemma 4.2) and thus we only sketch it for the case of the HMHD system. By Theorem 3.1, we know \({\mathcal {C}}_{HMHD}(x) \ne \emptyset \). Moreover, by Definition 3.3, as integration is linear, clearly \({\mathcal {C}}_{HMHD}(x)\) is convex. Finally, by Theorem 3.1 and [MP1], we know for all \({\mathbb {P}} \in {\mathcal {C}}_{HMHD}(x)\), \({\mathbb {P}}(L_{loc}^{\infty } ([0,\infty ); H) \cap L_{loc}^{2} ([0,\infty ); V) = 1\). This leads to

$$\begin{aligned} {\mathbb {P}} (C([0,\infty ); H_{\sigma } ) \cap \Omega _{HMHD}) \ge {\mathbb {P}} (L_{loc}^{\infty } ([0,\infty ); H) \cap L_{loc}^{2}([0,\infty ) ; V)) \end{aligned}$$

due to Lemma 6.1 with \({\mathcal {H}} = H\), \(\Omega = C([0,\infty ); {\mathcal {V}}') = C([0,\infty ); D(A^{\frac{\beta }{2}})') = \Omega _{HMHD}\) for \(\beta > \frac{5}{2}\) by (70) and (7). Therefore, we conclude that \({\mathbb {P}} (C([0,\infty ); H_{\sigma }) \cap \Omega _{HMHD} ) = 1\).

1.5 Proof of Proposition 3.8

The purpose of this subsection is to record the proof of Proposition 3.8 for completeness; it is similar to that of Flandoli and Romito (2008, Lemma 4.4) and thus we only sketch it only for the HMHD system. We fix \(x \in H\) and \({\mathbb {P}} \in {\mathcal {C}}_{HMHD}(x)\), denote by \(T_{{\mathbb {P}}}\) the set of exceptional times for \({\mathbb {P}}\) as defined in Definition 3.4. We may fix \(t \notin T_{{\mathbb {P}}}\) and let a mapping \(\omega \mapsto {\mathbb {P}} |_{{\mathcal {B}}_{t}^{HMHD}}^{\omega }\) be a r.c.p.d. of \({\mathbb {P}}\) on \({\mathcal {B}}_{t}^{HMHD}\) as defined in Definition 6.1. We set

$$\begin{aligned} \begin{aligned}&S_{t} \triangleq \{\omega \in \Omega _{HMHD}: \omega |_{[0,t]} \in L^{\infty } ([0,t]; H) \cap L^{2}([0, t]; V)\},\\&S^{t} \triangleq \{\omega \in \Omega _{HMHD}: \omega |_{[t,\infty )} \in L_{loc}^{\infty } ([t, \infty ); H) \cap L_{loc}^{2} ([t, \infty ); V) \}. \end{aligned} \end{aligned}$$
(79)

By (9), \(S_{t} \in {\mathcal {B}}_{t}^{HMHD}\) and \(S^{t} \in {\mathcal {B}}_{HMHD}^{t}\). Moreover, \(1 = \int _{S_{t}} {\mathbb {P}} |_{{\mathcal {B}}_{t}^{HMHD}}^{\omega } [S^{t}] {\mathbb {P}} (d \omega )\) by [MP1] and (72). Therefore, there exists a \({\mathbb {P}}\)-null set \(N_{1} \in {\mathcal {B}}_{t}^{HMHD}\) such that \({\mathbb {P}}|_{{\mathcal {B}}_{t}^{HMHD}}^{\omega }[S^{t}] = 1\) for any \(\omega \notin N_{1}\). Next, as we fixed \({\mathbb {P}} \in {\mathcal {C}}_{HMHD}(x)\), we know [MP2] holds for \({\mathbb {P}}\); thus, if we let \((\phi _{n})_{n \in {\mathbb {N}}} \subset C^{\infty }\) be dense in \(C^{\infty }\) with the \(D(A^{\frac{\beta }{2}})\)-norm where \(\beta > \frac{5}{2}\), fix \(n \in {\mathbb {N}}\), define

$$\begin{aligned} \begin{aligned} M_{t}^{\phi _{n}} \triangleq&\, \langle \xi _{t} - \xi _{0}, \phi _{n} \rangle + \int _{0}^{t} \langle \xi _{s}, A \phi _{n} \rangle \text {d}s - \int _{0}^{t} \langle B(\xi _{s}, \phi _{n}), \xi _{s} \rangle \text {d}s \\&+ \epsilon \int _{0}^{t} \langle (\nabla \times \xi _{2,s}) \times \xi _{2,s}, \nabla \times \phi _{2} \rangle \text {d}s, \end{aligned} \end{aligned}$$

then \((M_{t}^{\phi _{n}}, {\mathcal {B}}_{t}^{HMHD}, {\mathbb {P}})\) is a continuous, \({\mathbb {P}}\)-square-integrable martingale with a quadratic variation of \(\zeta _{t} = t |Q^{\frac{1}{2}} \phi _{n} |_{H}^{2}\). Thus by Lemma 6.5, there exists \(N_{2}^{n} \in {\mathcal {B}}_{t}^{HMHD}\) of null \({\mathbb {P}}\)-measure such that \((M_{s}^{\phi _{n}}, {\mathcal {B}}_{s}^{HMHD}, {\mathbb {P}} |_{{\mathcal {B}}_{t}^{HMHD}}^{\omega })_{s \ge t}\) is a continuous \({\mathbb {P}}|_{{\mathcal {B}}_{t}^{HMHD}}^{\omega }\)-square-integrable martingale with a quadratic variation \(\zeta _{t}\) for all \(\omega \notin N_{2}^{n}\). We set \(N_{2} \triangleq \cup _{n \in {\mathbb {N}}} N_{2}^{n}\) so that \({\mathbb {P}}(N_{2}) = 0\). Now if we set

$$\begin{aligned} \alpha _{t}^{1} \triangleq |\xi _{t} |_{H}^{2} + 2 \int _{0}^{t} ||\xi _{s} ||_{V}^{2} \text {d}s, \quad \beta _{t}^{1} \triangleq |\xi _{0} |_{H}^{2} + t \sigma ^{2}, \end{aligned}$$
(80)

then \(\alpha _{t}^{1}\) is lower semicontinuous, while \(\beta _{t}^{1}\) is clearly continuous and non-decreasing; hence, \(E_{t}^{1} = \alpha _{t}^{1} - \beta _{t}^{1}\) due to (11) and (80) is lower semicontinuous, \((E_{t}^{1}, {\mathcal {B}}_{t}^{HMHD}, {\mathbb {P}})\) is an a.e. super-martingale and \({\mathbb {E}}^{{\mathbb {P}}}[E_{t}^{1}] < \infty \) by [MP3]. Thus, by Lemma 6.7, there exists a \({\mathbb {P}}\)-null set \(N_{3} \in {\mathcal {B}}_{t}^{HMHD}\) such that \((E_{t}^{1}, {\mathcal {B}}_{t}^{HMHD}, {\mathbb {P}} |_{{\mathcal {B}}_{t_{0}}^{HMHD}}^{\omega })_{t \ge t_{0}}\) is an a.e. super-martingale for all \(\omega \notin N_{3}\).

If we also set

$$\begin{aligned} \alpha _{t}^{n} \triangleq |\xi _{t} |_{H}^{2n} + 2n \int _{0}^{t} |\xi _{s} |_{H}^{2n-2} ||\xi _{s} ||_{V}^{2} \text {d}s, \quad \beta _{t}^{n} \triangleq |\xi _{0} |_{H}^{2n} + n(2n-1) \sigma ^{2} \int _{0}^{t} |\xi _{s} |_{H}^{2n-2} \text {d}s, \end{aligned}$$

then identical application of Lemma 6.7 deduces the existence of a \({\mathbb {P}}\)-null set \(N_{4}^{n} \in {\mathcal {B}}_{t}^{HMHD}\) such that \((E_{t}^{n}, {\mathcal {B}}_{t}^{HMHD}, {\mathbb {P}} |_{{\mathcal {B}}_{t_{0}}^{HMHD}}^{\omega } )_{t \ge t_{0}}\) is an a.e. super-martingale for all \(\omega \notin N_{4}^{n}\). We take \(N_{4} \triangleq \cup _{n \in {\mathbb {N}}} N_{4}^{n}\).

Finally there exists a \({\mathbb {P}}\)-null set \(N_{5} \in {\mathcal {B}}_{t}^{HMHD}\) such that \({\mathbb {P}} |_{{\mathcal {B}}_{t}^{HMHD}}^{\omega } (\{\xi _{t} = \omega (t) \}) = 1\) for all \(\omega \notin N_{5}\). At last, the proof of Proposition 3.8 is complete once we set \(N \triangleq \cup _{j=1}^{5} N_{j}\) which is in \({\mathcal {B}}_{t}^{HMHD}\).

1.6 Proof of Proposition 3.9

The purpose of this subsection is to record the proof of Proposition 3.9 for completeness; it is similar to that of Flandoli and Romito (2008, Lemma 4.5), and thus, we only sketch it for the case of the HMHD system. We fix \(x \in H, {\mathbb {P}} \in {\mathcal {C}}_{HMHD}(x)\), let \(T_{{\mathbb {P}}}\) be the set of exceptional times of \({\mathbb {P}}\), and then fix \(t \notin T_{{\mathbb {P}}}\). We let a mapping \(\omega \mapsto Q_{\omega }\) be \({\mathcal {B}}_{t}^{HMHD}\)-measurable on \(\Omega _{HMHD}\), valued in \(Pr (\Omega _{HMHD}^{t})\) and denote by \(N_{Q} \in {\mathcal {B}}_{t}^{HMHD}\) the \({\mathbb {P}}\)-null set such that \(\omega (t) \in H\) and \(Q_{\omega } \in \Phi _{t} {\mathcal {C}}_{HMHD}(\omega (t))\) for all \(\omega \notin N_{Q}\). Firstly,

$$\begin{aligned} \begin{aligned} {\mathbb {P}} \otimes _{t} Q(L_{loc}^{\infty } ([0,\infty ); H) \cap L_{loc}^{2} ([0,\infty ); V)) = {\mathbb {P}} \otimes _{t} Q (S_{t} \cap S^{t}) = {\mathbb {P}} [S_{t}] \end{aligned} \end{aligned}$$

by (79), (72) and because \(Q_{\omega }[S^{t}] = 1\) by [MP1] as \(Q_{\omega } \in \Phi _{t} {\mathcal {C}}_{HMHD}(\omega (t))\). Thus, \({\mathbb {P}} \otimes _{t}Q\) satisfies [MP1] as \({\mathbb {P}} (S_{t}) = 1\) by (79) and that \({\mathbb {P}} \in {\mathcal {C}}_{HMHD}(x)\). Secondly, if we take \(\phi \in C^{\infty }\), then \((M_{s}^{\phi }, {\mathcal {B}}_{s}^{HMHD}, Q_{\omega })_{s \ge t}\) is a \(Q_{\omega }\)-square-integrable martingale for all \(\omega \notin N_{Q}\) due to [MP2]. Then Lemma 6.5 implies that \((M_{s}^{\phi }, {\mathcal {B}}_{s}^{HMHD}, {\mathbb {P}} \otimes _{t} Q)_{s \ge t}\) is a \({\mathbb {P}} \otimes _{t} Q\)-square-integrable martingale. As \({\mathbb {P}}\) and \({\mathbb {P}} \otimes _{t} Q\) are equal on \({\mathcal {B}}_{t}^{HMHD}\) due to Definition 6.1, and \((M_{s}^{\phi }, {\mathcal {B}}_{s}^{HMHD}, {\mathbb {P}})_{0\le s \le t}\) is a martingale, we see that \((M_{s}^{\phi }, {\mathcal {B}}_{s}^{HMHD}, {\mathbb {P}} \otimes _{t} Q)_{s \ge 0}\) is also a martingale; hence, \({\mathbb {P}} \otimes _{t} Q\) satisfies [MP2]. The proof that \({\mathbb {P}} \otimes _{t} Q\) satisfies [MP3] and [MP4] follows similarly using Lemma 6.7 and lower semicontinuity of \(E_{t}^{n}\) for \(n \ge 1\) as defined in (12) in the spirit of the proof of Proposition 3.8. Finally, \({\mathbb {P}}\) and \({\mathbb {P}} \otimes _{t} Q\) are equal on \({\mathcal {B}}_{t}^{HMHD}\), while \({\mathbb {P}} \in {\mathcal {C}}_{HMHD}(x)\) so that \(\delta _{x}\) is the marginal of \({\mathbb {P}}\) at \(t = 0\); it follows that \(\delta _{x}\) is the marginal of \({\mathbb {P}} \otimes _{t} Q\) at \(t= 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamazaki, K. Markov Selections for the Magnetohydrodynamics and the Hall-Magnetohydrodynamics Systems. J Nonlinear Sci 29, 1761–1812 (2019). https://doi.org/10.1007/s00332-019-09530-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-019-09530-x

Keywords

Mathematics Subject Classification