[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Spherical Particle in Nematic Liquid Crystal Under an External Field: The Saturn Ring Regime

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We consider a nematic liquid crystal occupying the exterior region in \({\mathbb {R}}^3\) outside of a spherical particle, with radial strong anchoring. Within the context of the Landau-de Gennes theory, we study minimizers subject to an external field, modeled by an additional term which favors nematic alignment parallel to the field. When the external field is high enough, we obtain a scaling law for the energy. The energy scale corresponds to minimizers concentrating their energy in a boundary layer around the particle, with quadrupolar symmetry. This suggests the presence of a Saturn ring defect around the particle, rather than a dipolar director field typical of a point defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alama, S., Bronsard, L., Galvão Sousa, B.: Weak anchoring for a two-dimensional liquid crystal. Nonlinear Anal. 119, 74–97 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Alama, S., Bronsard, L., Lamy, X.: Analytical description of the saturn-ring defect in nematic colloids. Phys. Rev. E 93, 012705 (2016a)

    Article  Google Scholar 

  • Alama, S., Bronsard, L., Lamy, X.: Minimizers of the Landau-de Gennes energy around a spherical colloid particle. Arch. Ration. Mech. Anal. 222(1), 427–450 (2016b)

    Article  MathSciNet  MATH  Google Scholar 

  • Alama, S., Bronsard, L., Golovaty, D., Lamy, X. (in preparation)

  • Ball, J.M., Zarnescu, A.: Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech. Anal. 202(2), 493–535 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Bauman, P., Park, J., Phillips, D.: Analysis of nematic liquid crystals with disclination lines. Arch. Ration. Mech. Anal. 205(3), 795–826 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Canevari, G.: Biaxiality in the asymptotic analysis of a 2D Landau-de Gennes model for liquid crystals. ESAIM Control Optim. Calc. Var. 21(1), 101–137 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Canevari, G.: Line defects in the small elastic constant limit of a three-dimensional Landau-de Gennes model. arXiv:1501.05236 (2016)

  • Contreras, A., Lamy, X.: Biaxial escape in nematics at low temperature. J. Funct. Anal. 272(10), 3987–3997 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Contreras, A., Lamy, X., Rodiac, R.: On the convergence of minimizers of singular perturbation functionals. Indiana Univ. Math. J. (2016)

  • Di Fratta, G., Robbins, J.M., Slastikov, V., Zarnescu, A.: Half-integer point defects in the Q-tensor theory of nematic liquid crystals. J. Nonlinear Sci. 26(1), 121–140 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Fukuda, J., Stark, H., Yoneya, M., Yokoyama, H.: Dynamics of a nematic liquid crystal around a spherical particle. J. Phys. Condens. Matter 16(19), S1957 (2004)

    Article  Google Scholar 

  • Fukuda, J., Yokoyama, H.: Stability of the director profile of a nematic liquid crystal around a spherical particle under an external field. Eur. Phys. J. E 21(4), 341–347 (2006)

    Article  Google Scholar 

  • Golovaty, D., Montero, J.A.: On minimizers of a Landau-de Gennes energy functional on planar domains. Arch. Ration. Mech. Anal. 213(2), 447–490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Gu, Y., Abbott, N.: Observation of saturn-ring defects around solid microspheres in nematic liquid crystals. Phys. Rev. Lett. 85, 4719–4722 (2000)

    Article  Google Scholar 

  • Ignat, R., Nguyen, L., Slastikov, V., Zarnescu, A.: Uniqueness results for an ODE related to a generalized Ginzburg-Landau model for liquid crystals. SIAM J. Math. Anal. 46(5), 3390–3425 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Ignat, R., Nguyen, L., Slastikov, V., Zarnescu, A.: Stability of the melting hedgehog in the Landau-de Gennes theory of nematic liquid crystals. Arch. Ration. Mech. Anal. 215(2), 633–673 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Ignat, R., Nguyen, L., Slastikov, V., Zarnescu, A.: Instability of point defects in a two-dimensional nematic liquid crystal model. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(4), 1131–1152 (2016a)

    Article  MathSciNet  MATH  Google Scholar 

  • Ignat, R., Nguyen, L., Slastikov, V., Zarnescu, A.: Stability of point defects of degree \(\pm \frac{1}{2}\) in a two-dimensional nematic liquid crystal model. Calc. Var. Partial Differ. Equ. 55(5), 119 (2016b)

    Article  MATH  Google Scholar 

  • Loudet, J.C., Poulin, P.: Application of an electric field to colloidal particles suspended in a liquid-crystal solvent. Phys. Rev. Lett. 87, 165503 (2001)

    Article  Google Scholar 

  • Majumdar, A., Zarnescu, A.: Landau-de Gennes theory of nematic liquid crystals: the Oseen–Frank limit and beyond. Arch. Ration. Mech. Anal. 196(1), 227–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Stark, H.: Physics of colloidal dispersions in nematic liquid crystals. Phys. Rep. 351(6), 387–474 (2001)

    Article  Google Scholar 

  • Stark, H.: Saturn-ring defects around microspheres suspended in nematic liquid crystals: an analogy between confined geometries and magnetic fields. Phys. Rev. E 66, 032701 (2002)

    Article  Google Scholar 

  • Sternberg, P.: Vector-valued local minimizers of nonconvex variational problems. Rocky Mt. J. Math. 21, 799–807 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank E. C. Gartland for useful discussions on nondimensionalization. SA and LB were supported by NSERC (Canada) Discovery Grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stan Alama.

Additional information

Communicated by Robert V. Kohn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alama, S., Bronsard, L. & Lamy, X. Spherical Particle in Nematic Liquid Crystal Under an External Field: The Saturn Ring Regime. J Nonlinear Sci 28, 1443–1465 (2018). https://doi.org/10.1007/s00332-018-9456-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-018-9456-z

Keywords

Mathematics Subject Classification

Navigation