Abstract
Many thin three-dimensional elastic bodies can be reduced to elastic shells: two-dimensional elastic bodies whose reference shape is not necessarily flat. More generally, morphoelastic shells are elastic shells that can remodel and grow in time. These idealized objects are suitable models for many physical, engineering, and biological systems. Here, we formulate a general geometric theory of nonlinear morphoelastic shells that describes both the evolution of the body shape, viewed as an orientable surface, as well as its intrinsic material properties such as its reference curvatures. In this geometric theory, bulk growth is modeled using an evolving referential configuration for the shell, the so-called material manifold. Geometric quantities attached to the surface, such as the first and second fundamental forms, are obtained from the metric of the three-dimensional body and its evolution. The governing dynamical equations for the body are obtained from variational consideration by assuming that both fundamental forms on the material manifold are dynamical variables in a Lagrangian field theory. In the case where growth can be modeled by a Rayleigh potential, we also obtain the governing equations for growth in the form of kinetic equations coupling the evolution of the first and the second fundamental forms with the state of stress of the shell. We apply these ideas to obtain stress-free growth fields of a planar sheet, the time evolution of a morphoelastic circular cylindrical shell subject to time-dependent internal pressure, and the residual stress of a morphoelastic planar circular shell.
Similar content being viewed by others
Notes
cf. (2.7) where the notation \({\bar{\varvec{G}}}_{{\mathcal {H}}}\) was introduced.
The Lie derivative along the vector field \(\varvec{{\mathcal {V}}}\) is defined as \({\varvec{L}}_{\varvec{{\mathcal {V}}}}\varvec{{\mathcal {V}}}^\parallel = \left. \frac{\hbox {d}}{\hbox {d}t}\right| _{t=s} \left[ \left( \varphi _t \circ \varphi _s^{-1}\right) ^*\varvec{{\mathcal {V}}}^\parallel \right] \), where \(\varphi _t \circ \varphi _s^{-1}\) is the flow of \(\varvec{{\mathcal {V}}}\).
Note that since the vector \({\varvec{U}}\) is tangent to \({\mathcal {H}}\) at \(\varphi (X,t)\), the vectors \(\left[ \varvec{{\mathcal {V}}}, {\varvec{U}} \right] ={\varvec{L}}_{\varvec{{\mathcal {V}}}}{\varvec{U}}\) and \(\tilde{\nabla }_{{\varvec{U}}} {\varvec{n}}\) are tangent to \({\mathcal {H}}\) as well.
Since the Lagrangian density is a scalar, it depends on the metrics \({\varvec{G}}\) and \({\tilde{\varvec{g}}}\).
For fixed X and t, we let \(\varphi _{\epsilon ,t}(X):=\varphi _{\epsilon }(X,t).\)
Recall the Piola identity \(\left( JF^{-A}{}_a\right) _{|A}=0\).
We define the convected manifold to be the material manifold \({\mathcal {H}}\) equipped with the right Cauchy–Green deformation tensor \({\varvec{C}}\).
The components of \({\varvec{C}}^{-1}\), the inverse of \({\varvec{C}}\), are denoted by \(C^{-AB}\).
Following (4.17b), there are three equilibrium equations
Because of the symmetry of the problem and the isotropy of the material, the stresses take the form (5.9). This implies that Eq. (5.10a) are trivially satisfied and the terms containing derivatives in (5.10b) vanish. Therefore, we are left with Eq. (5.11) as the only non-trivial equilibrium equation.
When \(\omega =0\), the first fundamental form \({\varvec{G}}\) is not a dynamical variable anymore, and hence, the kinetic equation (5.20a) should be discarded.
We let for example \(\omega _A=ZK_A(R,t)\) for \(A=R,\Theta \) in (5.24).
Note that \(\left( \Sigma ^{AB}+C^{-AC}\Theta _{CD}\Lambda ^{DB}\right) _{||B} +C^{-AC}\Theta _{CD} \Lambda ^{DB}{}_{||B} =\left( \Sigma ^{AB}+2C^{-AC}\Theta _{CD}\Lambda ^{DB}\right) _{||B} -\left( C^{-AC}\Theta _{CD}\right) _{||B}\Lambda ^{DB}\). Also, we have \(\text {J} = \frac{r}{R}\). Therefore, the convected stress and couple-stress tensors read \({\varvec{\Sigma }}=\frac{R}{r}{\varvec{S}}\) and \({\varvec{\Lambda }}=\frac{R}{r}{\varvec{M}}\).
References
Ambrosi, D., Guana, F.: Stress-modulated growth. Math. Mech. Solids 12(3), 319–342 (2007)
Ambrosi, D., Ateshian, G., Arruda, E., Cowin, S., Dumais, J., Goriely, A., Holzapfel, G., Humphrey, J., Kemkemer, R., Kuhl, E., Olberding, J., Taber, L., Garikipati, K.: Perspectives on biological growth and remodeling. J. Mech. Phys. Solids 59(4), 863–883 (2011)
Angoshtari, A., Yavari, A.: Differential complexes in continuum mechanics. Arch. Ration. Mech. Anal. 216(1), 193–220 (2015)
Aron, H.: Das gleichgewicht und die bewegung einer unendlich dünnen, beliebig gekrümmten elastischen schale. J. Reine Angew. Math. 78, 136–174 (1874)
Amar, MBen, Goriely, A.: Growth and instability in elastic tissues. J. Mech. Phys. Solids 53(10), 2284–2319 (2005)
Bonnet, O.: Mémoire sur la théorie des surfaces applicables sur une surface donnée. J. l’École Polytech. 24, 209–230 (1865)
Chien, W.-Z.: The intrinsic theory of thin shells and plates i. Q. Appl. Math. 1, 297–327 (1943)
Chladni, E.F.F.: Die Akustik. Breitkopf & Härtel, Wiesbaden (1830)
Chuong, C., Fung, Y.: Residual stress in arteries. In Frontiers in Biomechanics, pp. 117–129. Springer, (1986)
Coddington, A., Levinson, N.: Theory of Ordinary Differential Equations. International series in pure and applied mathematics. Tata McGraw-Hill, New York (1955)
Cosserat, E., Cosserat, F.: Théories des Corps Déformables. Hermann, Paris (1909)
Cox, D.: Galois Theory. Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts.Wiley, (2012). ISBN 9781118218426
Delsanto, P.P., Guiot, C., Degiorgis, P.G., Condat, C.A., Mansury, Y., Deisboeck, T.S.: Growth model for multicellular tumor spheroids. Appl. Phys. Lett. 85(18), 4225–4227 (2004)
Dervaux, J., Ciarletta, P., Amar, MBen: Morphogenesis of thin hyperelastic plates: a constitutive theory of biological growth in the föppl-von kármán limit. J. Mech. Phys. Solids 57(3), 458–471 (2009)
do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice-Hall, New Jersey (1976)
do Carmo, M.: Riemannian Geometry [translated by F. Flahetry from the 1988 Portuguese edition]. Mathematics: Theory & Applications. Birkhäuser Boston, (1992). ISBN 1584883553
Eckart, C.: The thermodynamics of irreversible processes. iv. the theory of elasticity and anelasticity. Phys. Rev. 73(4), 373 (1948)
Efrati, E., Sharon, E., Kupferman, R.: Elastic theory of unconstrained non-euclidean plates. J. Mech. Phys. Solids 57(4), 762–775 (2009)
Ericksen, J.L., Truesdell, C.: Exact theory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1(1), 295–323 (1958)
Fox, D., Raoult, A., Simo, J.: A justification of nonlinear properly invariant plate theories. Arch. Ration. Mech. Anal. 124(2), 157–199 (1993)
Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11), 1461–1506 (2002a)
Friesecke, G., Müller, S., James, R.D.: Rigorous derivation of nonlinear plate theory and geometric rigidity. Comptes Rendus Math. 334(2), 173–178 (2002b)
Friesecke, G., James, R.D., Mora, M.G., Müller, S.: Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by gamma-convergence. Comptes Rendus Math. 336(8), 697–702 (2003)
Fung, Y.: On the foundations of biomechanics. J. Appl. Mech. 50(4b), 1003–1009 (1983)
Fung, Y.: What are the residual stresses doing in our blood vessels? Ann. Biomed. Eng. 19(3), 237–249 (1991)
Fung, Y.-C.: Stress, strain, growth, and remodeling of living organisms. In Theoretical, Experimental, and Numerical Contributions to the Mechanics of Fluids and Solids, pp. 469–482. Springer, (1995)
Fusi, L., Farina, A., Ambrosi, D.: Mathematical modeling of a solid-liquid mixture with mass exchange between constituents. Mathe. Mech. Solids 11(6), 575–595 (2006)
Geitmann, A., Ortega, J.K.: Mechanics and modeling of plant cell growth. Trends Plant Sci. 14(9), 467–478 (2009)
Germain, S.: Recherches sur la théorie des surfaces élastiques. Mme. Ve. Courcier, Paris (1821)
Goriely, A., Amar, MBen: Differential growth and instability in elastic shells. Phys. Rev. Lett. 94(19), 198103 (2005)
Green, A., Zerna, W.: The equilibrium of thin elastic shells. Q. J. Mech. Appl. Math. 3(1), 9–22 (1950)
Han, H., Fung, Y.: Residual strains in porcine and canine trachea. J. Biomech. 24(5), 307–315 (1991)
Helmlinger, G., Netti, P.A., Lichtenbeld, H.C., Melder, R.J., Jain, R.K.: Solid stress inhibits the growth of multicellular tumor spheroids. Nat. Biotechnol. 15(8), 778–783 (1997)
Hicks, N.J.: Notes on differential geometry. Van Nostrand mathematical studies, no.3. Van Nostrand Reinhold Co., (1965). ISBN 9780442034108
Hori, K., Suzuki, M., Abe, I., Saito, S.: Increased tumor tissue pressure in association with the growth of rat tumors. Jpn. J. Cancer Res.: Gann 77(1), 65–73 (1986)
Hsu, F.-H.: The influences of mechanical loads on the form of a growing elastic body. J. Biomech. 1(4), 303–311 (1968)
Humphrey, J.: Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. Springer, (2002). ISBN 9780387951683
Ivey, T.A., Landsberg, J.M.: Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems. American Mathematical Society, Providence (2003)
Kadianakis, N., Travlopanos, F.: Kinematics of hypersurfaces in riemannian manifolds. J. Elast. 111(2), 223–243 (2013)
Kirchhoff, G.: Über das gleichgewicht und die bewegung einer elastischen scheibe. J. Reine Angew. Math. 40, 51–88 (1850)
Koiter, W.T.: On the nonlinear theory of thin elastic shells. I- Introductory sections. II—Basic shell equations. III—Simplified shell equations. K. Ned. Akad. van Wet., Proc., Ser. B 69(1), 1–54 (1966)
Kondaurov, V., Nikitin, L.: Finite strains of viscoelastic muscle tissue. J. Appl. Math. Mech. 51(3), 346–353 (1987)
Kröner, E.: Allgemeine kontinuumstheorie der versetzungen und eigenspannungen. Arch. Ration. Mech. Anal. 4(1), 273–334 (1959)
Le Dret, H., Raoult, A.: Le modèle de membrane non linéaire comme limite variationnelle de l’élasticité non linéaire tridimensionnelle. Comptes Rendus l’Acad. Scie.Sér. 1, Math. 317(2), 221–226 (1993)
Lods, V., Miara, B.: Analyse asymptotique des coques en flexion non linéairement élastiques. Comptes Rendus l’Acad. Scie.Sér. 1, Math. 321(8), 1097–1102 (1995)
Lods, V., Miara, B.: Nonlinearly elastic shell models: a formal asymptotic approach ii. the flexural model. Arch. Ration. Mech. Anal. 142(4), 355–374 (1998)
Love, A.E.H.: The small free vibrations and deformation of a thin elastic shell. Philos. Trans. R. Soc. Lond. A 179, 491–546 (1888)
Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, Cambridge (1892)
Lu, J., Papadopoulos, P.: A covariant constitutive description of anisotropic non-linear elasticity. 51(2):204–217, (2000). ISSN 0044-2275
Lubarda, V., Hoger, A.: On the mechanics of solids with a growing mass. Int. J. Solids Struct. 39(18), 4627–4664 (2002)
Lubarda, V.A.: Constitutive theories based on the multiplicative decomposition of deformation gradient: thermoelasticity, elastoplasticity, and biomechanics. Appl. Mech. Rev. 57(2), 95–108 (2004)
Marsden, J., Hughes, T.: Mathematical Foundations of Elasticity, Dover Civil and Mechanical Engineering Series. Dover, London (1983)
Marsden, J.E., Ratiu, T.: Introd. Mech. Symmetry. Springer, New York (1994)
Mathieu, E.: Mémoire sur le mouvement vibratoire des cloches. Gauthier-Villars (1882)
McMahon, J., Goriely, A., Tabor, M.: Nonlinear morphoelastic plates I: genesis of residual stress. Math. Mech. Solids 16(8), 812–832 (2011a)
McMahon, J., Goriely, A., Tabor, M.: Nonlinear morphoelastic plates II: exodus to buckled states. Math. Mech. Solids 16(8), 833–871 (2011b)
Miara, B.: Nonlinearly elastic shell models: a formal asymptotic approach i. the membrane model. Arch. Ration. Mech. Anal. 142(4), 331–353 (1998)
Naghdi, P.: Foundations of elastic shell theory. In: Sneddon, I.N., Hill, K. (eds.) Progress in Solid Mechanics, vol. 4, pp. 1–90. North Hollande Publishing Cy, Amsterdam (1963)
Nishikawa, S.: Variational Problems in Geometry, volume 205 of Iwanami series in modern mathematics. American Mathematical Society, (2002). ISBN 9780821813560
Novozhilov, V.: The theory of thin shells [translated by P. G. Lowe from the 1951 Russian edition]. P. Noordhoff, (1964)
Olsson, T., Klarbring, A.: Residual stresses in soft tissue as a consequence of growth and remodeling: application to an arterial geometry. Eur. J. Mech.A/Solids 27(6), 959–974 (2008)
Omens, J.H., Fung, Y.-C.: Residual strain in rat left ventricle. Circ. Res. 66(1), 37–45 (1990)
Ozakin, A., Yavari, A.: A geometric theory of thermal stresses. J. Math. Phys. 51, 032902 (2010)
Pezzulla, M., Shillig, S.A., Nardinocchi, P., Holmes, D.P.: Morphing of geometric composites via residual swelling. Soft. Matter. 11, 5812–5820 (2015a)
Pezzulla, M., Smith, G.P., Nardinocchi, P., Holmes, D.P.: Geometry and mechanics of thin growing bilayers. pp. 1–5, (2015b). arXiv:1509.05259v2
Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y.: Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124(1), 62–85 (1996)
Polyanin, A., Zaitsev, V.: Handbook of Nonlinear Partial Differential Equations. CRC Press, (2004). ISBN 9780203489659
Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994)
Sadik, S., Yavari, A.: Geometric nonlinear thermoelasticity and the time evolution of thermal stresses. Math. Mech. Solids (2015). doi:10.1177/1081286515599458
Sadik, S., Yavari, A.: On the origins of the idea of the multiplicative decomposition of the deformation gradient. Math. Mech. Solids. (2016). doi:10.1177/1081286515612280,
Sanders Jr., J.L.: Nonlinear theories for thin shells. Technical report technical report no. 10, DTIC Document, (1961)
Silberberg, J.S., Barre, P.E., Prichard, S.S., Sniderman, A.D.: Impact of left ventricular hypertrophy on survival in end-stage renal disease. Kidney Int. 36(2), 286–290 (1989)
Skalak, R.: Growth as a finite displacement field. In: Proceedings of the IUTAM Symposium on Finite Elasticity, pp. 347–355. Springer, (1982)
Skalak, R., Dasgupta, G., Moss, M., Otten, E., Dullemeijer, P., Vilmann, H.: Analytical description of growth. J. Theor. Biol. 94(3), 555–577 (1982)
Skalak, R., Zargaryan, S., Jain, R.K., Netti, P.A., Hoger, A.: Compatibility and the genesis of residual stress by volumetric growth. J. Math. Biol. 34(8), 889–914 (1996)
Stojanović, R., Djurić, S., Vujošević, L.: On finite thermal deformations. Arch. Mech. Stosow. 1(16), 103–108 (1964)
Synge, J.L., Chien, W.Z.: The intrinsic theory of elastic shells and plates. In: von Kármán anniv. vol., pp. 103–120. Cal. Inst. Tech., Pasadena, (1941)
Taber, L.A.: Biomechanics of growth, remodeling, and morphogenesis. Appl. Mech. Rev. 48(8), 487–545 (1995)
Takamizawa, K., Matsuda, T.: Kinematics for bodies undergoing residual stress and its applications to the left ventricle. J. Appl. Mech. 57(2), 321–329 (1990)
Verpoort, S.: The geometry of the second fundamental form: curvature properties and variational aspects. PhD thesis, Katholieke Universiteit Leuven, (2008)
Yavari, A.: A geometric theory of growth mechanics. J. Nonlinear Sci. 20(6), 781–830 (2010)
Yavari, A., Goriely, A.: Riemann–Cartan geometry of nonlinear dislocation mechanics. Arch. Ration. Mech. Anal. 205(1), 59–118 (2012a)
Yavari, A., Goriely, A.: Weyl geometry and the nonlinear mechanics of distributed point defects. Proc. R. Soc. A 468, 3902–3922 (2012b)
Yavari, A., Goriely, A.: Nonlinear elastic inclusions in isotropic solids. Proc. R. Soc. A: Math., Phys. Eng. Sci. 469(2160), 20130415 (2013a)
Yavari, A., Goriely, A.: Riemann–Cartan geometry of nonlinear disclination mechanics. Math. Mech. Solids 18(1), 91–102 (2013b)
Yavari, A., Goriely, A.: The geometry of discombinations and its applications to semi-inverse problems in anelasticity. Proc. R. Soc. A 470, 20140403 (2014)
Yavari, A., Goriely, A.: The twist-fit problem: finite torsional and shear eigenstrains in nonlinear elastic solids. Proc. R. Soc. A 471, 20150596 (2015)
Yavari, A., Marsden, J.E., Ortiz, M.: On spatial and material covariant balance laws in elasticity. J. Math. Phys. 47, 042903 (2006)
Acknowledgments
SS was supported by a Fulbright Grant. AG is a Wolfson/Royal Society Merit Award Holder and acknowledges support from a Reintegration Grant under EC Framework VII. We thank M.F. Shojaei for his help with some of the numerical examples. This research was partially supported by AFOSR – Grant No. FA9550-12-1-0290 and NSF—Grant No. CMMI 1042559 and CMMI 1130856.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Paul Newton.
Appendix: Derivation of the Euler–Lagrange Equations
Appendix: Derivation of the Euler–Lagrange Equations
In this appendix, we work out in detail the derivation of the Euler–Lagrange equations first assuming that \(\delta {\varvec{G}}=\delta {\varvec{B}}={\varvec{0}}\). We substitute (4.8), (4.9), (4.10), (4.11), and (4.12) into (4.7) to obtain
Hence, we have
We can rewrite (7.2) as
At \(t=t_1\), we assume that \(\varphi _{\epsilon ,t_1}=\varphi _{t_1}\) so that \(\delta \varphi _{t_1}=0\). Therefore, by integrating the first term in (7.3) in the time domain, we obtain only one term at \(t=t_0\) giving the initial condition on the velocity at \(t=t_0\). By applying Stokes’ theorem to the following five terms, if we denote by \(\varvec{{\mathsf {T}}}\) the outward in-plane vector field normal to the boundary curve \(\partial {\mathcal {H}}\), we obtain
By arbitrariness of \(\delta \varphi ^\parallel \), \(\delta \varphi ^n\), and \(d(\delta \varphi ^n)\), the Euler–Lagrange equations for shells (4.13) together with the initial and boundary conditions (4.14) follow from (7.4). Note that following Codazzi’s equation (2.3), we have \({\beta }_{bc|a}={\beta }_{ac|b}.\) Therefore \(\frac{\partial {\mathcal {L}}}{\partial \Theta _{AB}}F^c{}_AF^b{}_B{\beta }_{bc|a}=\frac{\partial {\mathcal {L}}}{\partial \Theta _{AB}}F^c{}_A{\beta }_{ac|B}.\)
Rights and permissions
About this article
Cite this article
Sadik, S., Angoshtari, A., Goriely, A. et al. A Geometric Theory of Nonlinear Morphoelastic Shells. J Nonlinear Sci 26, 929–978 (2016). https://doi.org/10.1007/s00332-016-9294-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00332-016-9294-9