[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The Scaling Attractor and Ultimate Dynamics for Smoluchowski’s Coagulation Equations

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We describe a basic framework for studying dynamic scaling that has roots in dynamical systems and probability theory. Within this framework, we study Smoluchowski’s coagulation equation for the three simplest rate kernels K(x,y)=2, x+y and xy. In another work, we classified all self-similar solutions and all universality classes (domains of attraction) for scaling limits under weak convergence (Menon and Pego in Commun. Pure Appl. Math. 57, 1197–1232, [2004]). Here we add to this a complete description of the set of all limit points of solutions modulo scaling (the scaling attractor) and the dynamics on this limit set (the ultimate dynamics). A key tool is Bertoin’s Lévy-Khintchine representation formula for eternal solutions of Smoluchowski’s equation (Bertoin in Ann. Appl. Probab. 12, 547–564, [2002a]). This representation linearizes the dynamics on the scaling attractor, revealing these dynamics to be conjugate to a continuous dilation, and chaotic in a classical sense. Furthermore, our study of scaling limits explains how Smoluchowski dynamics “compactifies” in a natural way that accounts for clusters of zero and infinite size (dust and gel).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldous, D.J.: Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists. Bernoulli 5, 3–48 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bertoin, J.: Lévy Processes. Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  3. Bertoin, J.: The inviscid Burgers equation with Brownian initial velocity. Commun. Math. Phys. 193, 397–406 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bertoin, J.: Eternal solutions to Smoluchowski’s coagulation equation with additive kernel and their probabilistic interpretations. Ann. Appl. Probab. 12, 547–564 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bertoin, J.: Some aspects of additive coalescents. In: Proceedings of the International Congress of Mathematicians, Beijing 2002, vol. III, pp. 15–23. Higher Ed. Press (2002)

  6. Carraro, L., Duchon, J.: Solutions statistiques intrinsèques de l’équation de Burgers et processus de Lévy. C. R. Acad. Sci. Paris Sér. I Math. 319, 855–858 (1994)

    MATH  MathSciNet  Google Scholar 

  7. Chassaing, P., Louchard, G.: Phase transition for parking blocks, Brownian excursion and coalescence. Random Struct. Algorithms 21, 76–119 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Drake, R.L.: A general mathematical survey of the coagulation equation. In: Hidy, G.M., Brock, J.R. (eds.) Topics in Current Aerosol Research. International Reviews in Aerosol Physics and Chemistry, vol. 2, pp. 201–376. Pergammon, Elmsford (1972)

    Google Scholar 

  9. Feller, W.: An Introduction to Probability Theory and its Applications, vol. II, 2nd edn. Wiley, New York (1971)

    MATH  Google Scholar 

  10. Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953)

    Google Scholar 

  11. Fournier, N., Laurençot, P.: Existence of self-similar solutions to Smoluchowski’s coagulation equation. Commun. Math. Phys. 256, 351–379 (2005)

    Article  Google Scholar 

  12. Fournier, N., Laurençot, P.: Well-posedness of Smoluchowski’s coagulation equation for a class of homogeneous kernels. J. Funct. Anal. 233, 351–379 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Golovin, A.M.: The solution of the coagulating equation for cloud droplets in a rising air current. Izv. Geophys. Ser. 482–487 (1963)

  14. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Applied Mathematical Sciences, vol. 42. Springer, NewYork (1983)

    MATH  Google Scholar 

  15. Jain, N.C., Orey, S.: Domains of partial attraction and tightness conditions. Ann. Probab. 8, 584–599 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  16. Loeve, M.: Paul Lévy, 1886–1971. Ann. Probab. 1, 1–18 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  17. Escobedo, M., Mischler, S., Ricard, M.R.: On self-similarity and stationary problem for fragmentation and coagulation models. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 99–125 (2005)

    Article  MATH  Google Scholar 

  18. Maejima, M.: Semistable distributions. In: Lévy Processes, pp. 169–183. Birkhäuser, Boston (2001)

    Google Scholar 

  19. Menon, G., Pego, R.L.: Universality classes in Burgers turbulence. Commun. Math. Phys. 273, 177–202 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Menon, G., Pego, R.L.: Approach to self-similarity in Smoluchowski’s coagulation equations. Commun. Pure Appl. Math. 57, 1197–1232 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Menon, G., Pego, R.L.: Dynamical scaling in Smoluchowski’s coagulation equations: Uniform convergence. SIAM Review 48, 745–768 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Norris, J.R.: Smoluchowski’s coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent. Ann. Appl. Probab. 9, 78–109 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Smoluchowski, M.V.: Drei Vorträge über Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen. Phys. Z. 17, 557–585 (1916)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govind Menon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menon, G., Pego, R.L. The Scaling Attractor and Ultimate Dynamics for Smoluchowski’s Coagulation Equations. J Nonlinear Sci 18, 143–190 (2008). https://doi.org/10.1007/s00332-007-9007-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-007-9007-5

Keywords

Mathematics Subject Classification (2000)

Navigation