[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A whole spectroscopic mapping approach for studying the spatial distribution of pigments in paintings

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We propose a non-invasive approach for the identification and mapping of pigments in paintings. The method is based on three highly complementary imaging spectroscopy techniques, visible multispectral imaging, X-Ray fluorescence mapping and Raman mapping, combined with multivariate data analysis of multidimensional spectroscopic datasets for the extraction of key distribution information in a semi-automatic way. The proposed approach exploits a macro-Raman mapping device, capable of detecting Raman signals from non-perfectly planar surfaces without the need of refocusing. Here, we show that the presence of spatially correlated Raman signals, detected in adjacent points of a painted surface, reinforces the level of confidence for material identification with respect to single-point analysis, even in the presence of very weak and complex Raman signals. The new whole-mapping approach not only provides the identification of inorganic and organic pigments but also gives striking information on the spatial distribution of pigments employed in complex mixtures for achieving different hues. Moreover, we demonstrate how the synergic combination on three spectroscopic methods, characterized by highly different time consumption, yields maximum information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Bitossi, R. Giorgi, M. Mauro, B. Salvadori, L. Dei, Spectroscopic techniques in cultural heritage conservation: a survey. Appl. Spectrosc. Rev. 40(3), 187–228 (2005)

    Article  ADS  Google Scholar 

  2. M. Manso, M.L. Carvalho, Application of spectroscopic techniques for the study of paper documents: a survey. Spectrochim. Acta Part B At. Spectrosc. 64(6), 482–490 (2009)

    Article  ADS  Google Scholar 

  3. J.M. Madariaga, Analytical chemistry in the field of cultural heritage. Anal Methods 7, 4848–4876 (2015)

    Article  Google Scholar 

  4. C. Miliani, F. Rosi, A. Burnstock, B.G. Brunetti, A. Sgamellotti, Non-invasive in-situ investigations versus micro-sampling: a comparative study on a Renoirs painting. Appl. Phys. A Mater. Sci. Process. 89(4), 849–856 (2007)

    Article  ADS  Google Scholar 

  5. S. Baronti, A. Casini, F. Lotti, S. Porcinai, Multispectral imaging system for the mapping of pigments in works of art by use of principal-component analysis. Appl. Opt. 37(8), 1299–1309 (1998)

    Article  ADS  Google Scholar 

  6. J.K. Delaney, J.G. Zeibel, M. Thoury, R. Littleton, M. Palmer, K.M. Morales, E.R. de la Rie, A. Hoenigswald, Visible and infrared imaging spectroscopy of Picasso’s Harlequin Musician: mapping and identification of artist materials. Appl. Spectrosc. 64(6), 584–594 (2010)

    Article  ADS  Google Scholar 

  7. A. Cesaratto, A. Nevin, G. Valentini, L. Brambilla, C. Castiglioni, L. Toniolo, M. Fratelli, D. Comelli, A novel classification method for multispectral imaging combined with portable raman spectroscopy for the analysis of a painting by Vincent van Gogh. Appl. Spectrosc. 67(11), 1234–1241 (2013)

    Article  ADS  Google Scholar 

  8. M. Aceto, A. Agostino, G. Fenoglio, M. Gulmini, V. Bianco, E. Pellizzi, Non invasive analysis of miniature paintings: proposal for an analytical protocol. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 91, 352–359 (2012)

    Article  ADS  Google Scholar 

  9. S. Kogou, A. Lucian, S. Bellesia, L. Burgio, K. Bailey, C. Brooks, H. Liang, A holistic multimodal approach to the non-invasive analysis of watercolour paintings. Appl. Phys. A Mater. Sci. Process. 121(3), 999–1014 (2015)

    Article  ADS  Google Scholar 

  10. M. Alfeld, V. Pedroso, V.E. Hommes, G. Van, A mobile instrument for in situ scanning macro-XRF. J Anal At Spectrom 28, 760–767 (2013)

    Article  Google Scholar 

  11. E. Ravaud, L. Pichon, E. Laval, V. Gonzalez, M. Eveno, T. Calligaro, Development of a versatile XRF scanner for the elemental imaging of paintworks. Appl. Phys. A Mater. Sci. Process. 122(1), 1–7 (2016)

    Article  Google Scholar 

  12. F.P. Romano, C. Caliri, L. Cosentino, S. Gammino, L. Giuntini, D. Mascali, L. Neri, L. Pappalardo, F. Rizzo, F. Taccetti, Macro and micro full field X-Ray fluorescence with an X-Ray pinhole camera presenting high energy and high spatial resolution. Anal. Chem. 86, 10892–10899 (2014)

    Article  Google Scholar 

  13. A. Zielińska, W. Dąbrowski, T. Fiutowski, B. Mindur, P. Wiącek, P. Wróbel, X-ray fluorescence imaging system for fast mapping of pigment distributions in cultural heritage paintings, J. Instrum. 8, P10011–P10011 (2013)

    Article  Google Scholar 

  14. A. Deneckere, M. De Reu, M.P.J. Martens, K. De Coene, B. Vekemans, L. Vincze, P. De Maeyer, P. Vandenabeele, L. Moens, The use of a multi-method approach to identify the pigments in the 12th century manuscript Liber Floridus. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 80(1), 125–132 (2011)

    Article  ADS  Google Scholar 

  15. S. Mosca, T. Frizzi, M. Pontone, R. Alberti, L. Bombelli, V. Capogrosso, A. Nevin, G. Valentini, D. Comelli, Identification of pigments in different layers of illuminated manuscripts by X-ray fluorescence mapping and Raman spectroscopy. Microchem. J. 124, 775–784 (2016)

    Article  Google Scholar 

  16. A. Deneckere, B. Vekemans, L. de Van Voorde, P. De Paepe, L. Vincze, L. Moens, P. Vandenabeele, Feasibility study of the application of micro-Raman imaging as complement to micro-XRF imaging. Appl. Phys. A 116, 363–376 (2012)

    Article  ADS  Google Scholar 

  17. H.G.M. Edwards, I.R. Lewis, Handbook of Raman spectroscopy: from the research laboratory to the process line, Marcel Dekker (2001), in Handbook of Raman Spectroscopy, chapter 5 (CRC Press, New York, 2001)

  18. S. Stewart, R.J. Priore, M.P. Nelson, P.J. Treado, Raman imaging. Ann. Rev. Anal. Chem. 5(1), 337–360 (2012)

    Article  Google Scholar 

  19. S. Schlucker, M.D. Schaeberle, S.W. Huffman, I.W. Levin, Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies. Anal. Chem. 75(16), 4312–4318 (2003)

    Article  Google Scholar 

  20. H.R. Morris, C.C. Hoyt, P. Miller, P.J. Treado, Liquid crystal tunable filter Raman chemical imaging. Appl. Spectrosc. 50(6), 805–811 (1996)

    Article  ADS  Google Scholar 

  21. D.A. Long, Early history of the Raman effect. Int. rev. Phys. Chem. 7(4), 317–349 (1988)

    Article  Google Scholar 

  22. J.B. MacQueen, Kmeans some methods for classification and analysis of multivariate observations. in 5th Berkeley Symposium on Mathematical Statistics and Probability 1967, vol. 1, no. (233), pp. 281–297 (1967)

  23. A.R.S. Marçal, J.S. Borges, Estimation of the “natural” number of classes of a multispectral image. Int. Geosci. Remote Sens. Symp. (IGARSS) 6, 3788–3791 (2005)

    Google Scholar 

  24. S. Xu, M.V. Kamath, D.W. Capson, Selection of partitions from a hierarchy. Pattern Recognit. Lett. 14, 7–15 (1993)

    Article  Google Scholar 

  25. D.L. Davies, D.W. Bouldin, A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1(2), 224–227 (1979)

    Article  Google Scholar 

  26. A. Brambilla, I. Osticioli, A. Nevin, D. Comelli, C.D. Andrea, A. Brambilla, I. Osticioli, A. Nevin, D. Comelli, C.D. Andrea, C. Lofrumento, G. Valentini, R. Cubeddu, A remote scanning Raman spectrometer for in situ measurements of works of art a remote scanning Raman spectrometer for in situ measurements of works of art. Rev. Sci. Instrum. 82, 063109 (2011)

    Article  ADS  Google Scholar 

  27. M. Miljković, T. Chernenko, M.J. Romeo, B. Bird, C. Matthäus, M. Diem, Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. The Analyst 135(8), 2002–13 (2010)

    Article  ADS  Google Scholar 

  28. Ucl, Raman Spectroscopic Library. http://www.chem.ucl.ac.uk/resources/raman/

  29. E-Vibrational Spectroscopic Database. http://www.ehu.eus/udps/database

  30. Rruff project database. http://rruff.info/

  31. Universita’ del restauro del salento. http://www.restaurolibrario.unile.it/database.asp

  32. D. Bikiaris, S. Daniilia, S. Sotiropoulou, O. Katsimbiri, E. Pavlidou, A.P. Moutsatsou, Y. Chryssoulakis, Ochre-differentiation through micro-Raman and micro-FTIR spectroscopies: application on wall paintings at Meteora and Mount Athos, Greece. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 56(1), 3–18 (2000)

    Article  ADS  Google Scholar 

  33. A. Colombini, D. Kaifas, Characterization of some orange and By Raman spectroscopy. Preserv. Sci. 7, 14–21 (2010)

    Google Scholar 

  34. A. Coccato, J. Jehlicka, P. Vandenabeele, Raman spectroscopy for the investigation of carbon-based black pigments. J. Raman Spectrosc. 46, 1003–1015 (2015)

    Article  ADS  Google Scholar 

  35. F. Rosi, M. Paolantoni, C. Clementi, B. Doherty, C. Miliani, B.G. Brunetti, A. Sgamellotti, Subtracted shifted Raman spectroscopy of organic dyes and lakes. J. Raman Spectrosc. 41(4), 452–458 (2010)

    Google Scholar 

  36. S.E.J. Bell, E.S.O. Bourguignon, A. Dennis, Analysis of luminescent samples using subtracted shifted Raman spectroscopy. The Analyst 123(8), 1729–1734 (1998)

    Article  ADS  Google Scholar 

  37. F. Schulte, K.W. Brzezinka, K. Lutzenberger, H. Stege, U. Panne, Raman spectroscopy of synthetic organic pigments used in 20th century works of art. J. Raman Spectrosc. 39(10), 1455–1463 (2008)

    Article  ADS  Google Scholar 

  38. J. Dik, K. Janssens, G. Van Der Snickt, L. Van Der Loeff, K. Rickers, M. Cotte, Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping. Anal. Chem. 80(16), 6436–6442 (2008)

    Article  Google Scholar 

  39. L. Zhang, M.J. Henson, S.S. Sekulic, Multivariate data analysis for Raman imaging of a model pharmaceutical tablet. Anal. Chim. Acta 545(2), 262–278 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Aviva Burnstock for the preparation of the model painting sample. Research was partially funded by the Italian Ministry of Education, Universities and Research within the framework of the JPI Cultural Heritage JHEP Pilot call through the LeadART project Induced decay and aging mechanisms in paintings: focus on interactions between lead and zinc white and organic material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mosca.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 22876 KB)

Supplementary material 2 (pdf 2315 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosca, S., Alberti, R., Frizzi, T. et al. A whole spectroscopic mapping approach for studying the spatial distribution of pigments in paintings. Appl. Phys. A 122, 815 (2016). https://doi.org/10.1007/s00339-016-0345-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0345-8

Keywords