Abstract
We propose a non-invasive approach for the identification and mapping of pigments in paintings. The method is based on three highly complementary imaging spectroscopy techniques, visible multispectral imaging, X-Ray fluorescence mapping and Raman mapping, combined with multivariate data analysis of multidimensional spectroscopic datasets for the extraction of key distribution information in a semi-automatic way. The proposed approach exploits a macro-Raman mapping device, capable of detecting Raman signals from non-perfectly planar surfaces without the need of refocusing. Here, we show that the presence of spatially correlated Raman signals, detected in adjacent points of a painted surface, reinforces the level of confidence for material identification with respect to single-point analysis, even in the presence of very weak and complex Raman signals. The new whole-mapping approach not only provides the identification of inorganic and organic pigments but also gives striking information on the spatial distribution of pigments employed in complex mixtures for achieving different hues. Moreover, we demonstrate how the synergic combination on three spectroscopic methods, characterized by highly different time consumption, yields maximum information.
Similar content being viewed by others
References
G. Bitossi, R. Giorgi, M. Mauro, B. Salvadori, L. Dei, Spectroscopic techniques in cultural heritage conservation: a survey. Appl. Spectrosc. Rev. 40(3), 187–228 (2005)
M. Manso, M.L. Carvalho, Application of spectroscopic techniques for the study of paper documents: a survey. Spectrochim. Acta Part B At. Spectrosc. 64(6), 482–490 (2009)
J.M. Madariaga, Analytical chemistry in the field of cultural heritage. Anal Methods 7, 4848–4876 (2015)
C. Miliani, F. Rosi, A. Burnstock, B.G. Brunetti, A. Sgamellotti, Non-invasive in-situ investigations versus micro-sampling: a comparative study on a Renoirs painting. Appl. Phys. A Mater. Sci. Process. 89(4), 849–856 (2007)
S. Baronti, A. Casini, F. Lotti, S. Porcinai, Multispectral imaging system for the mapping of pigments in works of art by use of principal-component analysis. Appl. Opt. 37(8), 1299–1309 (1998)
J.K. Delaney, J.G. Zeibel, M. Thoury, R. Littleton, M. Palmer, K.M. Morales, E.R. de la Rie, A. Hoenigswald, Visible and infrared imaging spectroscopy of Picasso’s Harlequin Musician: mapping and identification of artist materials. Appl. Spectrosc. 64(6), 584–594 (2010)
A. Cesaratto, A. Nevin, G. Valentini, L. Brambilla, C. Castiglioni, L. Toniolo, M. Fratelli, D. Comelli, A novel classification method for multispectral imaging combined with portable raman spectroscopy for the analysis of a painting by Vincent van Gogh. Appl. Spectrosc. 67(11), 1234–1241 (2013)
M. Aceto, A. Agostino, G. Fenoglio, M. Gulmini, V. Bianco, E. Pellizzi, Non invasive analysis of miniature paintings: proposal for an analytical protocol. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 91, 352–359 (2012)
S. Kogou, A. Lucian, S. Bellesia, L. Burgio, K. Bailey, C. Brooks, H. Liang, A holistic multimodal approach to the non-invasive analysis of watercolour paintings. Appl. Phys. A Mater. Sci. Process. 121(3), 999–1014 (2015)
M. Alfeld, V. Pedroso, V.E. Hommes, G. Van, A mobile instrument for in situ scanning macro-XRF. J Anal At Spectrom 28, 760–767 (2013)
E. Ravaud, L. Pichon, E. Laval, V. Gonzalez, M. Eveno, T. Calligaro, Development of a versatile XRF scanner for the elemental imaging of paintworks. Appl. Phys. A Mater. Sci. Process. 122(1), 1–7 (2016)
F.P. Romano, C. Caliri, L. Cosentino, S. Gammino, L. Giuntini, D. Mascali, L. Neri, L. Pappalardo, F. Rizzo, F. Taccetti, Macro and micro full field X-Ray fluorescence with an X-Ray pinhole camera presenting high energy and high spatial resolution. Anal. Chem. 86, 10892–10899 (2014)
A. Zielińska, W. Dąbrowski, T. Fiutowski, B. Mindur, P. Wiącek, P. Wróbel, X-ray fluorescence imaging system for fast mapping of pigment distributions in cultural heritage paintings, J. Instrum. 8, P10011–P10011 (2013)
A. Deneckere, M. De Reu, M.P.J. Martens, K. De Coene, B. Vekemans, L. Vincze, P. De Maeyer, P. Vandenabeele, L. Moens, The use of a multi-method approach to identify the pigments in the 12th century manuscript Liber Floridus. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 80(1), 125–132 (2011)
S. Mosca, T. Frizzi, M. Pontone, R. Alberti, L. Bombelli, V. Capogrosso, A. Nevin, G. Valentini, D. Comelli, Identification of pigments in different layers of illuminated manuscripts by X-ray fluorescence mapping and Raman spectroscopy. Microchem. J. 124, 775–784 (2016)
A. Deneckere, B. Vekemans, L. de Van Voorde, P. De Paepe, L. Vincze, L. Moens, P. Vandenabeele, Feasibility study of the application of micro-Raman imaging as complement to micro-XRF imaging. Appl. Phys. A 116, 363–376 (2012)
H.G.M. Edwards, I.R. Lewis, Handbook of Raman spectroscopy: from the research laboratory to the process line, Marcel Dekker (2001), in Handbook of Raman Spectroscopy, chapter 5 (CRC Press, New York, 2001)
S. Stewart, R.J. Priore, M.P. Nelson, P.J. Treado, Raman imaging. Ann. Rev. Anal. Chem. 5(1), 337–360 (2012)
S. Schlucker, M.D. Schaeberle, S.W. Huffman, I.W. Levin, Raman microspectroscopy: a comparison of point, line, and wide-field imaging methodologies. Anal. Chem. 75(16), 4312–4318 (2003)
H.R. Morris, C.C. Hoyt, P. Miller, P.J. Treado, Liquid crystal tunable filter Raman chemical imaging. Appl. Spectrosc. 50(6), 805–811 (1996)
D.A. Long, Early history of the Raman effect. Int. rev. Phys. Chem. 7(4), 317–349 (1988)
J.B. MacQueen, Kmeans some methods for classification and analysis of multivariate observations. in 5th Berkeley Symposium on Mathematical Statistics and Probability 1967, vol. 1, no. (233), pp. 281–297 (1967)
A.R.S. Marçal, J.S. Borges, Estimation of the “natural” number of classes of a multispectral image. Int. Geosci. Remote Sens. Symp. (IGARSS) 6, 3788–3791 (2005)
S. Xu, M.V. Kamath, D.W. Capson, Selection of partitions from a hierarchy. Pattern Recognit. Lett. 14, 7–15 (1993)
D.L. Davies, D.W. Bouldin, A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1(2), 224–227 (1979)
A. Brambilla, I. Osticioli, A. Nevin, D. Comelli, C.D. Andrea, A. Brambilla, I. Osticioli, A. Nevin, D. Comelli, C.D. Andrea, C. Lofrumento, G. Valentini, R. Cubeddu, A remote scanning Raman spectrometer for in situ measurements of works of art a remote scanning Raman spectrometer for in situ measurements of works of art. Rev. Sci. Instrum. 82, 063109 (2011)
M. Miljković, T. Chernenko, M.J. Romeo, B. Bird, C. Matthäus, M. Diem, Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. The Analyst 135(8), 2002–13 (2010)
Ucl, Raman Spectroscopic Library. http://www.chem.ucl.ac.uk/resources/raman/
E-Vibrational Spectroscopic Database. http://www.ehu.eus/udps/database
Rruff project database. http://rruff.info/
Universita’ del restauro del salento. http://www.restaurolibrario.unile.it/database.asp
D. Bikiaris, S. Daniilia, S. Sotiropoulou, O. Katsimbiri, E. Pavlidou, A.P. Moutsatsou, Y. Chryssoulakis, Ochre-differentiation through micro-Raman and micro-FTIR spectroscopies: application on wall paintings at Meteora and Mount Athos, Greece. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 56(1), 3–18 (2000)
A. Colombini, D. Kaifas, Characterization of some orange and By Raman spectroscopy. Preserv. Sci. 7, 14–21 (2010)
A. Coccato, J. Jehlicka, P. Vandenabeele, Raman spectroscopy for the investigation of carbon-based black pigments. J. Raman Spectrosc. 46, 1003–1015 (2015)
F. Rosi, M. Paolantoni, C. Clementi, B. Doherty, C. Miliani, B.G. Brunetti, A. Sgamellotti, Subtracted shifted Raman spectroscopy of organic dyes and lakes. J. Raman Spectrosc. 41(4), 452–458 (2010)
S.E.J. Bell, E.S.O. Bourguignon, A. Dennis, Analysis of luminescent samples using subtracted shifted Raman spectroscopy. The Analyst 123(8), 1729–1734 (1998)
F. Schulte, K.W. Brzezinka, K. Lutzenberger, H. Stege, U. Panne, Raman spectroscopy of synthetic organic pigments used in 20th century works of art. J. Raman Spectrosc. 39(10), 1455–1463 (2008)
J. Dik, K. Janssens, G. Van Der Snickt, L. Van Der Loeff, K. Rickers, M. Cotte, Visualization of a lost painting by Vincent van Gogh using synchrotron radiation based X-ray fluorescence elemental mapping. Anal. Chem. 80(16), 6436–6442 (2008)
L. Zhang, M.J. Henson, S.S. Sekulic, Multivariate data analysis for Raman imaging of a model pharmaceutical tablet. Anal. Chim. Acta 545(2), 262–278 (2005)
Acknowledgments
The authors are grateful to Aviva Burnstock for the preparation of the model painting sample. Research was partially funded by the Italian Ministry of Education, Universities and Research within the framework of the JPI Cultural Heritage JHEP Pilot call through the LeadART project Induced decay and aging mechanisms in paintings: focus on interactions between lead and zinc white and organic material.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Mosca, S., Alberti, R., Frizzi, T. et al. A whole spectroscopic mapping approach for studying the spatial distribution of pigments in paintings. Appl. Phys. A 122, 815 (2016). https://doi.org/10.1007/s00339-016-0345-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-016-0345-8