[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Computing with hysteretic resistor crossbars

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An architecture for nano-electronic computation based on crossbars of hysteretic resistors is presented. We show how such crossbars can implement inverting and non-inverting latches and sum-of-product logic functions, and give examples of a NAND gate, exclusive-OR gate, and half adder. Multiple hysteretic resistor crossbars may be combined to implement complex computational systems. The designs have been evaluated using SPICE (a general-purpose circuit simulation program), demonstrating the feasibility of implementation given a suitable nano-electronic substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Stan, P. Franzon, S. Goldstein, J. Lach, M. Ziegler: Proc. IEEE 9 (2003)

  2. S. Goldstein, M. Budiu: ‘NanoFabrics: Spatial Computing Using Molecular Electronics’. In: Proc. 28th Int. Symp. Computer Architecture, ISCA, 2001

  3. M. Ziegler, M. Stan: “Design and Analysis of Crossbar Circuits for Molecular Nanoelectronics”. In: IEEE Nanotechnology Conf., Washington, DC, August 2002

  4. Y. Luo, C. Collier, J. Jeppesen, K. Nielsen, E. Delonno, G. Ho, J. Perkins. H.R. Tseng, T. Yamamoto, J.F. Stoddart, J.R. Heath: Chem. Phys. Chem. 3, 519 (2002)

    Google Scholar 

  5. G. Snider, P. Kuekes, R.S. Williams: Nanotechnology 15, 881 (2004)

    Article  ADS  Google Scholar 

  6. J. Heath, M. Ratner: Phys. Today 56 (2003)

  7. A. DeHon: IEEE Trans. Nanotechnol. 2, 23 (2003)

    Article  ADS  Google Scholar 

  8. P. Kuekes, D. Stewart, R.S. Williams: J. Appl. Phys. 97, 34301 (2005)

    Article  Google Scholar 

  9. C. Collier, E. Wong, M. Belohradsky, R. Raymo, J.F. Stoddart, P. Kuekes, R.S. Williams, J. Heath: Science 285, 391 (1999)

    Article  Google Scholar 

  10. D. Stewart, D. Ohlberg, P. Beck, Y. Chen, R.S. Williams, J. Jeppesen, K. Nielsen, J.F. Stoddart: Nano Lett. 4, 133 (2004)

    Article  ADS  Google Scholar 

  11. Y. Chen, G.Y. Jung, D. Ohlberg, X. Li, D. Stewart, J. Jeppesen, K. Nielsen, J.F. Stoddart, D. Olynick, E. Anderson: Nanotechnology 14, 462 (2003)

    Article  ADS  Google Scholar 

  12. Y. Chen, R.S. Williams: Configurable nanoscale crossbar electronic circuits made by electrochemical reaction, US Patent No. 6 518 156 (2003)

  13. P. Kuekes: Molecular crossbar latch, US Patent No. 6 586 965 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Snider.

Additional information

PACS

85.40.Bh; 85.35.-p; 85.65.+h

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snider, G. Computing with hysteretic resistor crossbars. Appl. Phys. A 80, 1165–1172 (2005). https://doi.org/10.1007/s00339-004-3149-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-3149-1

Keywords

Navigation