[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Properties of UV protective films of poly(vinyl-chloride)/TiO2 nanocomposites for food packaging

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work studies the UV protection properties of poly(vinyl-chloride) (PVC) nanocomposites. A functional property of UV protection is achieved by adding the active component (titanium dioxide (TiO2) or titanium dioxide modified with silver nitrate and copper nitrate) to the PVC matrix. PVC nanocomposites were prepared by extrusion and then pressed into films. Prepared PVC nanocomposites were characterized by thermogravimetric analysis, UV–Vis spectroscopy, X-ray diffraction and scanning electron microscopy. The mechanical properties and antimicrobial activity were also studied. The results show that PVC nanocomposites’ thermal stability is improved in relation to a pure PVC polymer. The thermal stability and antimicrobial efficiency increase when higher silver nitrate content is used. The sample prepared with silver and copper nitrate shows the best thermal stability due to a modified mechanism of thermal degradation. Samples where nanoparticles are homogeneously dispersed in the polymer matrix show good mechanical properties. The results also show that adding the active component TiO2 modified with silver ions contributes to the improved UV protection property of nanocomposite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Robertson GI (2012) Food packaging: principles and practice. CRC Press, USA

    Google Scholar 

  2. Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782. doi:10.1016/j.progpolymsci.2011.02.003

    Article  CAS  Google Scholar 

  3. Colin-Chavez C, Soto-Valdez H, Peralta E (2013) Diffusion of natural astaxanthin from polyethylene active packaging films into a fatty food simulant. Food Res Int 54:873–880. doi:10.1016/j.foodres.2013.08.021

    Article  CAS  Google Scholar 

  4. Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24:19–29. doi:10.1016/j.tifs.2011.10.001

    Article  CAS  Google Scholar 

  5. Donlan RM (2002) Biofilms: microbial life on surface. Emerg Infect Dis 8:881–890. doi:10.3201/eid0809.020063

    Article  Google Scholar 

  6. David SL, Hsuan YG (2003) Assessing the photodegradation of geosynthetics by outdoor exposure and laboratory weatherometer. Geotext Geomembr 21:111–122. doi:10.1016/S0266-1144(02)00068-7

    Article  Google Scholar 

  7. Cheremisinoff NP (1997) Handbook of engineering polymeric materials. Marcel Dekker Inc., New York

    Google Scholar 

  8. Hussain I, Hamid H (2003) Plastics in agriculture. In: Andrady AL (ed) Plastics and the environment. Wiley, New York, pp 185–210

    Google Scholar 

  9. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715. doi:10.1021/ja00072a025

    Article  CAS  Google Scholar 

  10. Reddy MK, Manorama VS, Reddy RA (2003) Bandgap studies on anatase titanium dioxide nanoparticles. Mater Chem Phys 78:239–245. doi:10.1016/S0254-0584(02)00343-7

    Article  Google Scholar 

  11. Nussbaumer RJ, Caseri R, Smith P, Tervoort T (2003) Polymer-TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromol Mater Eng 288:44–49. doi:10.1002/mame.200290032

    Article  CAS  Google Scholar 

  12. Zhang Q, Gao L, Guo J (2000) Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Appl Catal B-Environ 26:207–215

    Article  CAS  Google Scholar 

  13. Han K, Yu M (2006) Study of the preparation and properties of UV-blocking fabrics of a PET/TiO2 nanocomposite prepared by in situ polycondensation. J Appl Polym Sci 100:1588–1593. doi:10.1002/app.23312

    Article  CAS  Google Scholar 

  14. Zhu H, Wu Y, Zhao X, Wan H, Yang L, Hong J, Yu Q, Dong L, Chen Y, Jian C, Wei J, Xu P (2006) Influence of impregnation times on the dispersion of CuO on anatase. J Mol Catal A-Chem 243:24–30. doi:10.1016/j.molcata.2005.08.021

    Article  CAS  Google Scholar 

  15. Li Y, Peng S, Jiang F, Lu G, Li S (2007) Effect of doping TiO2 with alkaline-earth metal ions on its photocatalytic activity. J Serbian Chem Soc 72:393–402. doi:10.2298/JSC0704393L

    Article  CAS  Google Scholar 

  16. Stern KH (1972) High temperature properties and decomposition of inorganic salts part B nitrates and nitrites. J Phys Chem Ref Data 1:747–772

    Article  Google Scholar 

  17. Yang H, Zhu S, Pan N (2004) Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme. J Appl Polym Sci 92:3201–3210. doi:10.1002/app.20327

    Article  CAS  Google Scholar 

  18. Mo S-D, Ching WY (1995) Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Phys Rev B 51:13023–13029. doi:10.1103/PhysRevB.51.13023

    Article  CAS  Google Scholar 

  19. Zhang Y, Xiong G, Yao N, Yang W, Fu X (2001) Preparation of titania-based catalysts for formaldehyde photocatalytic oxidation from TiCl4 by the sol–gel method. Catal Today 68:89–95

    Article  CAS  Google Scholar 

  20. Lattimer RP, Kroenke WJ (1980) The formation of volatile pyrolyzates form poly(vinyl chloride). J Appl Polym Sci 25:101–110. doi:10.1002/app.1980.070250110

    Article  CAS  Google Scholar 

  21. Montaudo G, Puglisi C (1991) Evolution of aromatics in the thermal degradation of polyvinylchloride: a mechanistic study. Polym Degrad Stab 33:229–262. doi:10.1016/0141-3910(91)90019-N

    Article  CAS  Google Scholar 

  22. Wilkie CA (2005) An introduction to the use of fillers and nanocomposites in fire retardancy. In: Le Bras M et al (eds) Fire retardancy of polymers: new applications of mineral filler. Royal Society of Chemistry, London, pp 3–15

    Google Scholar 

  23. Tyson BM, Al-Rub RKA, Yazdanbakhsh A, Grasley ZA (2011) Quantitative method for analyzing the dispersion and agglomeration of nano-particles in composite materials. Compos Part B-Eng 42:1395–1403. doi:10.1016/j.compositesb.2011.05.020

    Article  Google Scholar 

  24. Wu S (1973) Polar and nonpolar interactions in adhesion. J Adhes 5:39–55. doi:10.1080/00218467308078437

    Article  CAS  Google Scholar 

  25. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641. doi:10.1016/j.progpolymsci.2003.08.002

    Article  Google Scholar 

  26. Guo L, Yuan W, Lu Z, Li CM (2013) Polymer/nanosilver composite coatings for antibacterial applications. Colloids Surf A 439:69–83. doi:10.1016/j.colsurfa.2012.12.029

    Article  CAS  Google Scholar 

  27. Fu G, Vary P, Lin CT (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109:8889–8898

    Article  CAS  Google Scholar 

  28. Daoud WA, Xin JH (2004) Low temperature sol–gel processed photocatalytic titania coating. J Sol–Gel Sci Technol 29:25–29. doi:10.1023/B:JSST.0000016134.19752.b4

    Article  CAS  Google Scholar 

  29. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces 79:5–18. doi:10.1016/j.colsurfb.2010.03.029

    Article  CAS  Google Scholar 

  30. Grandcolas M, Yeb J, Hanagata N (2011) Combination of photocatalytic and antibacterial effects of silver oxide loaded on titania nanotubes. Mater Lett 65:236–239. doi:10.1016/j.matlet.2010.08.082

    Article  CAS  Google Scholar 

  31. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83. doi:10.1016/j.biotechadv.2008.09.002

    Article  CAS  Google Scholar 

  32. Jeong SH, Yeo SY, Yi SC (2005) The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. J Mater Sci 40:5407–5411. doi:10.1007/s10853-005-4339-8

    Article  CAS  Google Scholar 

  33. Yeo SY, Lee HJ, Jeong SH (2003) Preparation of nanocomposite fibers for permanent antibacterial effect. J Mater Sci 38:2143–2147. doi:10.1023/A:1023767828656

    Article  CAS  Google Scholar 

  34. Lok C (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924

    Article  CAS  Google Scholar 

  35. Jeong SH, Hwang YH, Yi SC (2005) Antibacterial properties of padded PP/PE nonwovens incorporating nano-sized silver colloids. J Mater Sci 40:5413–5418. doi:10.1007/s10853-005-4340-2

    Article  CAS  Google Scholar 

  36. Grace AN, Pandian K (2007) Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles: a brief study. Colloids Surf A 297:63–70

    Article  CAS  Google Scholar 

  37. Li Q, Chen SL, Jiang WC (2007) Durability of nano ZnO antibacterial cotton fabric to sweat. J Appl Polym Sci 103:412–416. doi:10.1002/app.24866

    Article  CAS  Google Scholar 

  38. Souza VGL, Fernando AL (2016) Nanoparticles in food packaging: biodegradability and potential migration to food—A review. Food Packag Shelf Life 8:63–70. doi:10.1016/j.fpsl.2016.04.001

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported in 2014 by the University of Zagreb, Croatia, through the Research Project PVC Nanocomposites with UV Protective Properties (TP1.29).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ljerka Kratofil Krehula or Zlata Hrnjak-Murgić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krehula, L.K., Papić, A., Krehula, S. et al. Properties of UV protective films of poly(vinyl-chloride)/TiO2 nanocomposites for food packaging. Polym. Bull. 74, 1387–1404 (2017). https://doi.org/10.1007/s00289-016-1782-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1782-4

Keywords

Navigation