[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Antifungal Metabolites of Streptomyces chrestomyceticus STR-2 Inhibits Magnaporthe oryzae, the Incitant of Rice Blast

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Rice, a staple food crop worldwide, suffers devastating yield losses as a result of blast disease caused by Magnaporthe oryzae Cav. The adverse effects of chemicals on the environment are rising concerns for sustainable and eco-friendly approaches. The use of antagonistic microbes for the management of rice blast appears to be a sustainable solution to this challenge. Herein, we isolated 20 Streptomyces strains from rice rhizosphere, among which the isolate STR-2 exhibited maximum inhibition of mycelial growth of M. oryzae accounting for 50% reduction over control. The isolate STR-2 was identified as S. chrestomyceticus through 16S rRNA gene sequencing. In vitro tests demonstrated its ability to produce antifungal and bioactive compounds and also synthesize siderophore, IAA, and phosphate-solubilizing agents, thereby promoting plant growth upon inoculation on rice seeds. GC–MS analysis showed the presence of volatiles, antifungal, antimicrobial, and antioxidant compounds with different retention times. The crude antibiotic extract of 0.5% of S. chrestomyceticus STR-2 reduced the mycelial growth of M. oryzae over the control. Application of talc-based formulation of Streptomyces chrestomyceticus STR-2 resulted in the least disease incidence (15.89%) with the highest disease reduction of 65.26% over untreated control under field condition. These findings indicate the potential of S. chrestomyceticus as a potential bio-inoculant against rice blast disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ashkani S, Rafii MY, Shabanimofrad M, Miah G, Sahebi M, Azizi P, Tanweer FA, Akhtar MS, Nasehi A (2015) Molecular breeding strategy and challenges towards improvement of blast disease resistance in rice crop. Front Plant Sci 6:886. https://doi.org/10.3389/fpls.2015.00886

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wilson RA, Talbot NJ (2009) Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol 7:185–195. https://doi.org/10.1038/nrmicro2032

    Article  CAS  PubMed  Google Scholar 

  4. Kato H (2001) Rice blast disease. Pestic Outlook 12(1):23–25. https://doi.org/10.1039/B100803J

    Article  CAS  Google Scholar 

  5. Harish S, Parthasarathy S, Durgadevi D, Anandhi K, Raguchander T (2019) Plant growth-promoting rhizobacteria: harnessing its potential for sustainable plant disease management. In: Kumar A, Meena VS (eds) Plant growth promoting rhizobacteria for agricultural sustainability. Springer, Singapore, pp 151–187. https://doi.org/10.1007/978-981-13-7553-8_8

    Chapter  Google Scholar 

  6. Harish S, Kavino M, Kumar N, Saravanakumar D, Soorianathasundaram K, Samiyappan R (2008) Biohardening with plant growth promoting rhizosphere and endophytic bacteria induces systemic resistance against banana bunchy top virus. Appl Soil Ecol 39(2):187–200. https://doi.org/10.1016/j.apsoil.2007.12.006

    Article  Google Scholar 

  7. Reddy KRK, Jyothi G, Sowjanya C, Kusumanjali K, Malathi N, Reddy KRN (2016) Plant growth-promoting actinomycetes: Mass production, delivery systems, and commercialization. In: Plant growth promoting actinobacteria. Springer, Singapore, pp 287–298. https://doi.org/10.1007/978-981-10-0707-1_19

    Chapter  Google Scholar 

  8. Vurukonda SSKP, Giovanardi D, Stefani E (2018) Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int J Mol Sci 19:952. https://doi.org/10.3390/ijms19040952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Law JW, Ser HL, Khan TM, Chuah LH, Pusparajah P, Chan KG, Goh BH, Lee LH (2017) The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front Microbiol 8:3. https://doi.org/10.3389/fmicb.2017.00003

    Article  PubMed  PubMed Central  Google Scholar 

  10. Copping LG, Duke SO (2007) Natural products that have been used commercially as crop protection agents. Pest Manage Sci 63:524–554. https://doi.org/10.1002/ps.1378

    Article  CAS  Google Scholar 

  11. Harsonowati W, Astuti RI, Wahyudi AT (2017) Leaf blast disease reduction by rice-phyllosphere actinomycetes producing bioactive compounds. Gen J Plant Pathol 83:98–108. https://doi.org/10.1007/s10327-017-0700-4

    Article  CAS  Google Scholar 

  12. Xiong ZQ, Tu XR, Wei SJ, Huang L, Li XH, Lu H, Tu GQ (2013) In vitro antifungal activity of antifungalmycin 702, a new polyene macrolide antibiotic, against the rice blast fungus Magnaporthe grisea. Biotechnol Lett 35(9):1475–1479. https://doi.org/10.1007/s10529-013-1229-z

    Article  CAS  PubMed  Google Scholar 

  13. Tamura T, Shinzato N, Ito M, Ueno M (2019) Microbial secondary metabolite induction of abnormal appressoria formation mediates control of rice blast disease caused by Magnaporthe oryzae. J Phytopathol 167(3):156–162. https://doi.org/10.1111/jph.12782

    Article  CAS  Google Scholar 

  14. Taridaporn B, Lapanun S, Supothina S, Rachtawee P, Chunhametha S, Suriyachadkun C, Boonruangprapa T, Auncharoen P, Chutrakul C, Vichai V (2016) Polycyclic tetrahydroxanthones from Streptomyces chrestomyceticus BCC 24770. Tetrahedron 72(5):775–778. https://doi.org/10.1016/j.tet.2015.12.045

    Article  CAS  Google Scholar 

  15. Mior ZA, Tong PE, Mohammadpourlima M, Yun WM (2017) Morphological and molecular characterizations of rice blast fungus, Magnaporthe oryzae. Pak J Agric Sci 54:765–772. https://doi.org/10.21162/PAKJAS/17.3786

    Article  Google Scholar 

  16. Srivastava D, Shamim MD, Kumar D, Pandey P, Khan NA, Singh KN (2014) Morphological and molecular characterization of Pyricularia oryzae causing blast disease in rice (Oryza sativa) from North India. Int J Sci Res Publ 4:1–9

    Google Scholar 

  17. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0. for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garcha S, Katyal P, Sharma V (2016) Microbial diversity in soil under different land use systems in sub-mountainous zone of Punjab. J Indian Soc Soil Sci 64(3):271–275. https://doi.org/10.5958/0974-0228.2016.00038.4

    Article  Google Scholar 

  19. Parte A, Whitman WB, Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI (2012) Bergey’s manual of systematic bacteriology: volume 5: the actinobacteria. Springer, New York

    Google Scholar 

  20. Boukaew S, Prasertsan P (2014) Suppression of rice sheath blight disease using a heat stable culture filtrate from Streptomyces philanthi RM-1-138. Crop Prot 61:1–10. https://doi.org/10.1016/j.cropro.2014.02.012

    Article  Google Scholar 

  21. Masand M, Sivakala KK, Menghani E, Thinesh T, Anandham R, Sharma G, Sivakumar N, Jebakumar SRD, Jose PA (2018) Biosynthetic potential of bioactive Streptomycetes isolated from arid region of the Thar desert, Rajasthan (India). Front Microbiol 9:687. https://doi.org/10.3389/fmicb.2018.00687

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li Q, Jiang Y, Ning P, Zheng L, Huang J, Li G, Jiang D, Hsiang T (2011) Suppression of Magnaporthe oryzae by culture filtrates of Streptomyces globisporus JK-1. Biol Control 58(2):139–148. https://doi.org/10.1016/j.biocontrol.2011.04.013

    Article  CAS  Google Scholar 

  23. Tamreihao K, Ningthoujam DS, Nimaichand S, Singh ES, Reena P, Singh SH, Nongthomba U (2016) Biocontrol and plant growth promoting activities of a Streptomyces corchorusii strain UCR3-16 and preparation of powder formulation for application as biofertilizer agents for rice plant. Microbiol Res 192:260–270. https://doi.org/10.1016/j.micres.2016.08.005

    Article  CAS  PubMed  Google Scholar 

  24. Manigundan K, Joseph J, Ayswarya S, Vignesh A, Vijayalakshmi G, Soytong K, Gopikrishnan V, Radhakrishnan M (2020) Identification of biostimulant and microbicide compounds from Streptomyces sp. UC1A-3 for plant growth promotion and disease control. Int J Agric Technol 16:1125–1144

    CAS  Google Scholar 

  25. Tang YW, Bonner J (1948) The enzymatic inactivation of indole acetic acid; the physiology of the enzyme. Am J Bot 35:570–578. https://doi.org/10.2307/2438053

    Article  CAS  PubMed  Google Scholar 

  26. Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. https://doi.org/10.1016/0003-2697(87)90612-9

    Article  CAS  PubMed  Google Scholar 

  27. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x

    Article  CAS  PubMed  Google Scholar 

  28. Gopalakrishnan S, Humayu P, Vadlamudi S, Vijayabharathi R, Bhimineni RK, Rupela O (2012) Plant growth-promoting traits of Streptomyces with biocontrol potential isolated from herbal vermicompost. Biocontrol Sci Technol 22(10):1199–1210. https://doi.org/10.1080/09583157.2012.719151

    Article  Google Scholar 

  29. Adhilakshmi M, Latha P, Paranidharan V, Balachandar D, Ganesamurthy K, Velazhahan R (2014) Biological control of stem rot of groundnut (Arachis hypogaea L.) caused by Sclerotium rolfsii Sacc. with actinomycetes. Arch Phytopathol Plant Prot 47(3):298–311. https://doi.org/10.1080/03235408.2013.809224

    Article  Google Scholar 

  30. Hasan NA, Rafii MY, Rahim HA, Ali NS, Mazlan N, Abdullah S (2016) Morphological and molecular characterization of fungal pathogen, Magnaphorthe oryzae. AIP Conf Proc. https://doi.org/10.1063/1.4940263

    Article  Google Scholar 

  31. Zarandi ME, Bonjar GHS, Dehkaei FP, Moosavi SAA, Farokhi PR, Aghighi S (2009) Biological control of rice blast (Magnaporthe oryzae) by use of Streptomyces sindeneusis isolate 263 in greenhouse. Am J Appl Sci 6(1):194–199. https://doi.org/10.3844/ajas.2009.194.199

    Article  CAS  Google Scholar 

  32. Aruna J, Kumar SV, Rambabu R, Ramesh S, Yashaswini C, Bhaskar B, Madhavi KR, Balachndran SM, Ravindrababu V, Prasad MS (2016) Morphological characterization of five different isolates of Pyricularia oryzae causing rice blast disease. Progress Res 11:3377–3380

    Google Scholar 

  33. Salim FM, Sharmili SA, Anbumalarmathi J, Umamaheswari K (2017) Isolation, molecular characterization and identification of antibiotic producing actinomycetes from soil samples. J Appl Pharm Sci 7:69–75. https://doi.org/10.7324/JAPS.2017.70909

    Article  CAS  Google Scholar 

  34. Boukaew SA, Plubrukam PP (2013) Effect of volatile substances from Streptomyces philanthi RM-1-138 on growth of Rhizoctonia solani on rice leaf. Biol Control 58:471–482. https://doi.org/10.1007/s10526-013-9510-6

    Article  CAS  Google Scholar 

  35. Aldesuquy HS, Mansour FA, Abo-Hamed SA (1998) Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol 43(5):465–470. https://doi.org/10.1007/BF02820792

    Article  Google Scholar 

  36. Chen YD, Zhou QD, Gao Z, Xie J, Luo Y (2018) Growth promotion and disease suppression ability of a Streptomyces sp. CB-75 from banana rhizosphere soil. Front Microbiol 8:2704. https://doi.org/10.3389/fmicb.2017.02704

    Article  PubMed  PubMed Central  Google Scholar 

  37. Saleh M (2018) Evaluation of endophytes isolated from rice leaves for their antifungal activities against Pyricularia oryzae causative blast disease. Egypt J Phytopathol 46:193–214. https://doi.org/10.21608/ejp.2018.87788

    Article  Google Scholar 

  38. Awla HK, Kadir J, Othman R, Rashid TS, Wong MY (2016) Bioactive compounds produced by Streptomyces sp. isolate UPMRS4 and antifungal activity against Pyricularia oryzae. Am J Plant Sci 7:1077. https://doi.org/10.4236/ajps.2016.77103

    Article  CAS  Google Scholar 

  39. Newitt JT, Prudence SMM, Hutchings MI, Worsley SF (2019) Biocontrol of cereal crop diseases using Streptomycetes. Pathogens 8:78. https://doi.org/10.3390/pathogens8020078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mun BG, Lee WH, Kang SM, Lee SU, Lee SM, Lee DY, Shahid M, Yun BW, Lee IJ (2020) Streptomyces sp. LH 4 promotes plant growth and resistance against Sclerotinia sclerotiorum in cucumber via modulation of enzymatic and defense pathways. Plant Soil. https://doi.org/10.1007/s11104-019-04411-4

    Article  Google Scholar 

  41. Prabavathy VR, Mathivanan N, Murugesan K (2006) Control of blast and sheath blight diseases of rice using antifungal metabolites produced by Streptomyces sp. PM5. Biol Control 39:313–319. https://doi.org/10.1016/j.biocontrol.2006.07.011

    Article  CAS  Google Scholar 

  42. Chaiharn M, Theantana T, Pathom-Aree W (2020) Evaluation of biocontrol activities of Streptomyces spp. against rice blast disease fungi. Pathogens 9:126. https://doi.org/10.3390/pathogens9020126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Awla HK, Kadir J, Othman R, Rashid TS, Hamid S, Wong MY (2017) Plant growth-promoting abilities and biocontrol efficacy of Streptomyces sp. UPMRS4 against Pyricularia oryzae. Biol Control 112:55–63. https://doi.org/10.1016/j.biocontrol.2017.05.011

    Article  CAS  Google Scholar 

  44. Xu T, Li Y, Zeng X, Yang X, Yang Y, Yuan S, Hu X, Zeng J, Wang Z, Liu Q (2017) Isolation and evaluation of endophytic Streptomyces endus OsiSh-2 with potential application for biocontrol of rice blast disease. J Sci Food Agric 97:1149–1157. https://doi.org/10.1002/jsfa.7841

    Article  CAS  PubMed  Google Scholar 

  45. Xu T, Cao L, Zeng J, Franco CMM, Yang Y, Hu X, Liu Y, Wang X, Gao Y, Bu Z (2019) The antifungal action mode of the rice endophyte Streptomyces hygroscopicus OsiSh-2 as a potential biocontrol agent against the rice blast pathogen. Pest Biochem Physiol 160:58–69. https://doi.org/10.1016/j.pestbp.2019.06.015

    Article  CAS  Google Scholar 

  46. Gao Y, Zeng XD, Ren B, Zeng JR, Xu T, Yang YZ, Hu XC, Zhu ZY, Shi LM, Zhou GY (2020) Antagonistic activity against rice blast disease and elicitation of host-defence response capability of an endophytic Streptomyces albidoflavus OsiLf-2. Plant Pathol 69:259. https://doi.org/10.1111/ppa.13118

    Article  CAS  Google Scholar 

  47. Ilsan NA (2017) Antifungal activity of phyllosphere actinobacteria against Pyricularia oryzae. In: 2nd international seminar on global health (ISGH), pp 308–315

  48. Awla HK (2021) Effect of Streptomyces xantholiticus on rice blast disease reduction and enzyme activity. Polytechnic J 11(1):112–117. https://doi.org/10.25156/ptj.v11n1y2021.pp112-117

    Article  Google Scholar 

  49. Liu Y, Chen N, Gao Y, Bu Z, Niu S, Wang Y, Liu X, Zhu Y (2021) Physiological, biochemical and proteomic insight into the response system of Streptomyces hygroscopicus OsiSh-2 to rice blast fungus toxins. Appl Soil Ecol 167:104058. https://doi.org/10.1016/j.apsoil.2021.104058

    Article  Google Scholar 

  50. Liu W, Wang J, Li S, Zhang H, Meng L, Liu L, Ping W, Du C (2022) Genomic and biocontrol potential of the crude lipopeptide by Streptomyces bikiniensis HD-087 against Magnaporthe oryzae. Front Microbiol. https://doi.org/10.3389/fmicb.2022.888645

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Plant Pathology, Agricultural College & Research Institute, Madurai, Tamil Nadu Agricultural University, Tamil Nadu, India for extending necessary infrastructural facilities to carry out the above research work. The author acknowledges the help rendered by M. Nivedha during the course of the experiments.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or non-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

RR : investigation, experimentation, and analysis, SH : conceptualization, supervision, validation, editing, and project administration, KK and GA : methodology and resources, MA and RK : data interpretation and analysis.

Corresponding author

Correspondence to S. Harish.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

No human and/or animal participants were involved in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

284_2023_3205_MOESM1_ESM.jpg

Supplemental Figure S1: Phylogenetic tree of Magnaporthe oryzae large subunit ribosomal RNA gene with other nucleotide sequences from the GenBank. rDNA homology searches were performed using the BLAST program and the sequences were submitted to GenBank. Clustering was determined by UPGMA analysis and the nucleotide sequences were aligned using CLUSTAL X 1.81. (TIF 31304 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahila, R., Harish, S., Kalpana, K. et al. Antifungal Metabolites of Streptomyces chrestomyceticus STR-2 Inhibits Magnaporthe oryzae, the Incitant of Rice Blast. Curr Microbiol 80, 107 (2023). https://doi.org/10.1007/s00284-023-03205-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03205-3

Navigation