[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Immunoreceptor TIGIT inhibits the cytotoxicity of human cytokine-induced killer cells by interacting with CD155

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

T cell Ig and ITIM domain (TIGIT) is a newly identified inhibitory receptor expressed on T and natural killer (NK) cells. Cytokine-induced killer (CIK) cells express CD3 and CD56 molecules, and share functional properties with both NK and T cells. However, it remains unknown whether TIGIT is expressed in CIK cells. Here, we show that TIGIT is expressed by CIK cells and interacts with CD155. By blocking TIGIT using an anti-TIGIT functional antibody, we demonstrate that CIK cells display increased proliferation; higher cytotoxic targeting of tumor cells expressing CD155; and higher expression of interferon-γ (IFN-γ), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Furthermore, increases in IFN-γ and cytotoxicity by blockade of TIGIT were reduced by blocking DNAX accessory molecule-1 (DNAM-1) signaling, implying that TIGIT exerts immunosuppressive effects by competing with DNAM-1 for the same ligand, CD155. Our results provide evidence that blockade of TIGIT may be a novel strategy to improve the cytotoxic activity of CIK cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABB:

1 × annexin-binding buffer

BSA:

Bovine serum albumin

CFSE:

Carboxyfluorescein diacetate succinimidyl ester

CIK:

Cytokine-induced killer

DNAM-1:

DNAX accessory molecule-1

ELISA:

Enzyme-linked immunosorbent assay

IFN-γ:

Interferon-γ

IL-2:

Interleukin-2

IL-6:

Interleukin-6

ITIM:

Immunoreceptor tyrosine-based inhibition motif

MHC:

Major histocompatibility complex

NK:

Natural killer

OKT-3:

Activating monoclonal antibody against CD3

PBMCs:

Peripheral blood mononuclear cells

PVR:

Poliovirus receptor

TIGIT:

T cell Ig and ITIM domain

TNF-α:

Tumor necrosis factor-α

References

  1. Schmidt-Wolf IG, Negrin RS, Kiem HP, Blume KG, Weissman IL (1991) Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med 174(1):139–149

    Article  CAS  PubMed  Google Scholar 

  2. Mehta BA, Schmidt-Wolf IG, Weissman IL, Negrin RS (1995) Two pathways of exocytosis of cytoplasmic granule contents and target cell killing by cytokine-induced CD3 + CD56 + killer cells. Blood 86(9):3493–3499

    CAS  PubMed  Google Scholar 

  3. Jakel CE, Schmidt-Wolf IG (2014) An update on new adoptive immunotherapy strategies for solid tumors with cytokine-induced killer cells. Expert Opin Biol Ther 14(7):905–916. doi:10.1517/14712598.2014.900537

    Article  PubMed  Google Scholar 

  4. Schmidt-Wolf IG, Lefterova P, Mehta BA, Fernandez LP, Huhn D, Blume KG, Weissman IL, Negrin RS (1993) Phenotypic characterization and identification of effector cells involved in tumor cell recognition of cytokine-induced killer cells. Exp Hematol 21(13):1673–1679

    CAS  PubMed  Google Scholar 

  5. Gutgemann S, Frank S, Strehl J, Schmidt-Wolf IG (2007) Cytokine-induced killer cells are type II natural killer T cells. Ger Med Sci 5:Doc07

    PubMed  PubMed Central  Google Scholar 

  6. Linn YC, Lau SK, Liu BH, Ng LH, Yong HX, Hui KM (2009) Characterization of the recognition and functional heterogeneity exhibited by cytokine-induced killer cell subsets against acute myeloid leukaemia target cell. Immunology 126(3):423–435. doi:10.1111/j.1365-2567.2008.02910.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sangiolo D, Martinuzzi E, Todorovic M, Vitaggio K, Vallario A, Jordaney N, Carnevale-Schianca F, Capaldi A, Geuna M, Casorzo L, Nash RA, Aglietta M, Cignetti A (2008) Alloreactivity and anti-tumor activity segregate within two distinct subsets of cytokine-induced killer (CIK) cells: implications for their infusion across major HLA barriers. Int Immunol 20(7):841–848. doi:10.1093/intimm/dxn042

    Article  CAS  PubMed  Google Scholar 

  8. Schmidt-Wolf IG, Finke S, Trojaneck B, Denkena A, Lefterova P, Schwella N, Heuft HG, Prange G, Korte M, Takeya M, Dorbic T, Neubauer A, Wittig B, Huhn D (1999) Phase I clinical study applying autologous immunological effector cells transfected with the interleukin-2 gene in patients with metastatic renal cancer, colorectal cancer and lymphoma. Br J Cancer 81(6):1009–1016. doi:10.1038/sj.bjc.6690800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shi M, Zhang B, Tang ZR, Lei ZY, Wang HF, Feng YY, Fan ZP, Xu DP, Wang FS (2004) Autologous cytokine-induced killer cell therapy in clinical trial phase I is safe in patients with primary hepatocellular carcinoma. World J Gastroenterol 10(8):1146–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Leemhuis T, Wells S, Scheffold C, Edinger M, Negrin RS (2005) A phase I trial of autologous cytokine-induced killer cells for the treatment of relapsed Hodgkin disease and non-Hodgkin lymphoma. Biol Blood Marrow Transplant 11(3):181–187. doi:10.1016/j.bbmt.2004.11.019

    Article  PubMed  Google Scholar 

  11. Introna M, Borleri G, Conti E, Franceschetti M, Barbui AM, Broady R, Dander E, Gaipa G, D’Amico G, Biagi E, Parma M, Pogliani EM, Spinelli O, Baronciani D, Grassi A, Golay J, Barbui T, Biondi A, Rambaldi A (2007) Repeated infusions of donor-derived cytokine-induced killer cells in patients relapsing after allogeneic stem cell transplantation: a phase I study. Haematologica 92(7):952–959

    Article  PubMed  Google Scholar 

  12. Hui D, Qiang L, Jian W, Ti Z, Da-Lu K (2009) A randomized, controlled trial of postoperative adjuvant cytokine-induced killer cells immunotherapy after radical resection of hepatocellular carcinoma. Dig Liver Dis 41(1):36–41. doi:10.1016/j.dld.2008.04.007

    Article  PubMed  Google Scholar 

  13. Zhong R, Teng J, Han B, Zhong H (2011) Dendritic cells combining with cytokine-induced killer cells synergize chemotherapy in patients with late-stage non-small cell lung cancer. Cancer Immunol Immunother 60(10):1497–1502. doi:10.1007/s00262-011-1060-0

    Article  CAS  PubMed  Google Scholar 

  14. Liu L, Zhang W, Qi X, Li H, Yu J, Wei S, Hao X, Ren X (2012) Randomized study of autologous cytokine-induced killer cell immunotherapy in metastatic renal carcinoma. Clin Cancer Res 18(6):1751–1759. doi:10.1158/1078-0432.CCR-11-2442

    Article  CAS  PubMed  Google Scholar 

  15. Li R, Wang C, Liu L, Du C, Cao S, Yu J, Wang SE, Hao X, Ren X, Li H (2012) Autologous cytokine-induced killer cell immunotherapy in lung cancer: a phase II clinical study. Cancer Immunol Immunother 61(11):2125–2133. doi:10.1007/s00262-012-1260-2

    Article  CAS  PubMed  Google Scholar 

  16. Shi L, Zhou Q, Wu J, Ji M, Li G, Jiang J, Wu C (2012) Efficacy of adjuvant immunotherapy with cytokine-induced killer cells in patients with locally advanced gastric cancer. Cancer Immunol Immunother 61(12):2251–2259. doi:10.1007/s00262-012-1289-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chung MJ, Park JY, Bang S, Park SW, Song SY (2014) Phase II clinical trial of ex vivo-expanded cytokine-induced killer cells therapy in advanced pancreatic cancer. Cancer Immunol Immunother 63(9):939–946. doi:10.1007/s00262-014-1566-3

    Article  CAS  PubMed  Google Scholar 

  18. Olioso P, Giancola R, Di Riti M, Contento A, Accorsi P, Iacone A (2009) Immunotherapy with cytokine induced killer cells in solid and hematopoietic tumours: a pilot clinical trial. Hematol Oncol 27(3):130–139. doi:10.1002/hon.886

    Article  CAS  PubMed  Google Scholar 

  19. Linn YC, Yong HX, Niam M, Lim TJ, Chu S, Choong A, Chuah C, Goh YT, Hwang W, Loh Y, Ng HJ, Suck G, Chan M, Koh M (2012) A phase I/II clinical trial of autologous cytokine-induced killer cells as adjuvant immunotherapy for acute and chronic myeloid leukemia in clinical remission. Cytotherapy 14(7):851–859. doi:10.3109/14653249.2012.694419

    Article  CAS  PubMed  Google Scholar 

  20. Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H, Eaton D, Grogan JL (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10(1):48–57. doi:10.1038/ni.1674

    Article  CAS  PubMed  Google Scholar 

  21. Joller N, Lozano E, Burkett PR, Patel B, Xiao S, Zhu C, Xia J, Tan TG, Sefik E, Yajnik V, Sharpe AH, Quintana FJ, Mathis D, Benoist C, Hafler DA, Kuchroo VK (2014) Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40(4):569–581. doi:10.1016/j.immuni.2014.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li M, Xia P, Du Y, Liu S, Huang G, Chen J, Zhang H, Hou N, Cheng X, Zhou L, Li P, Yang X, Fan Z (2014) T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand engagement suppresses interferon-gamma production of natural killer cells via beta-arrestin 2-mediated negative signaling. J Biol Chem 289(25):17647–17657. doi:10.1074/jbc.M114.572420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang T, Wang J, Zhou X, Liang R, Bai Q, Yang L, Gu H, Gao G, Dong B, Zhu H, Chen X (2014) Increased expression of TIGIT on CD4 + T cells ameliorates immune-mediated bone marrow failure of aplastic anemia. J Cell Biochem 115(11):1918–1927. doi:10.1002/jcb.24862

    CAS  PubMed  Google Scholar 

  24. Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, Levine Z, Beiman M, Dassa L, Achdout H, Stern-Ginossar N, Tsukerman P, Jonjic S, Mandelboim O (2009) The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci USA 106(42):17858–17863. doi:10.1073/pnas.0903474106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Levin SD, Taft DW, Brandt CS, Bucher C, Howard ED, Chadwick EM, Johnston J, Hammond A, Bontadelli K, Ardourel D, Hebb L, Wolf A, Bukowski TR, Rixon MW, Kuijper JL, Ostrander CD, West JW, Bilsborough J, Fox B, Gao Z, Xu W, Ramsdell F, Blazar BR, Lewis KE (2011) Vstm3 is a member of the CD28 family and an important modulator of T-cell function. Eur J Immunol 41(4):902–915. doi:10.1002/eji.201041136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stengel KF, Harden-Bowles K, Yu X, Rouge L, Yin J, Comps-Agrar L, Wiesmann C, Bazan JF, Eaton DL, Grogan JL (2012) Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell-cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc Natl Acad Sci USA 109(14):5399–5404. doi:10.1073/pnas.1120606109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Joller N, Hafler JP, Brynedal B, Kassam N, Spoerl S, Levin SD, Sharpe AH, Kuchroo VK (2011) Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J Immunol 186(3):1338–1342. doi:10.4049/jimmunol.1003081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lozano E, Dominguez-Villar M, Kuchroo V, Hafler DA (2012) The TIGIT/CD226 axis regulates human T cell function. J Immunol 188(8):3869–3875. doi:10.4049/jimmunol.1103627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Foks AC, Ran IA, Frodermann V, Bot I, van Santbrink PJ, Kuiper J, van Puijvelde GH (2013) Agonistic anti-TIGIT treatment inhibits T cell responses in LDLr deficient mice without affecting atherosclerotic lesion development. PLoS One 8(12):e83134. doi:10.1371/journal.pone.0083134

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stanietsky N, Rovis TL, Glasner A, Seidel E, Tsukerman P, Yamin R, Enk J, Jonjic S, Mandelboim O (2013) Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR. Eur J Immunol 43(8):2138–2150. doi:10.1002/eji.201243072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de Andrade LF, Smyth MJ, Martinet L (2014) DNAM-1 control of natural killer cells functions through nectin and nectin-like proteins. Immunol Cell Biol 92(3):237–244. doi:10.1038/icb.2013.95

    Article  PubMed  Google Scholar 

  32. Jiang G, Zhang K, Jiang AJ, Xu D, Xin Y, Wei ZP, Zheng JN, Liu YQ (2012) A conditionally replicating adenovirus carrying interleukin-24 sensitizes melanoma cells to radiotherapy via apoptosis. Mol Oncol 6(4):383–391. doi:10.1016/j.molonc.2012.05.001

    Article  CAS  PubMed  Google Scholar 

  33. Zhang BF, Liu JJ, Pei DS, Yang ZX, Di JH, Chen FF, Li HZ, Xu W, Wu YP, Zheng JN (2011) Potent antitumor effect elicited by RGD-mda-7, an mda-7/IL-24 mutant, via targeting the integrin receptor of tumor cells. Cancer Biother Radiopharm 26(5):647–655. doi:10.1089/cbr.2011.0984

    Article  CAS  PubMed  Google Scholar 

  34. Sloan KE, Stewart JK, Treloar AF, Matthews RT, Jay DG (2005) CD155/PVR enhances glioma cell dispersal by regulating adhesion signaling and focal adhesion dynamics. Cancer Res 65(23):10930–10937. doi:10.1158/0008-5472.CAN-05-1890

    Article  CAS  PubMed  Google Scholar 

  35. Peggs KS, Quezada SA, Korman AJ, Allison JP (2006) Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr Opin Immunol 18(2):206–213. doi:10.1016/j.coi.2006.01.011

    Article  CAS  PubMed  Google Scholar 

  36. Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, Krainer M, Houede N, Santos R, Mahammedi H, Ng S, Maio M, Franke FA, Sundar S, Agarwal N, Bergman AM, Ciuleanu TE, Korbenfeld E, Sengelov L, Hansen S, Logothetis C, Beer TM, McHenry MB, Gagnier P, Liu D, Gerritsen WR (2014) Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 15(7):700–712. doi:10.1016/S1470-2045(14)70189-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tarhini A (2013) Immune-mediated adverse events associated with ipilimumab CTLA-4 blockade therapy: the underlying mechanisms and clinical management. Scientifica 2013:857519. doi:10.1155/2013/857519

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369(2):122–133. doi:10.1056/NEJMoa1302369

    Article  CAS  PubMed  Google Scholar 

  39. Masson D, Jarry A, Baury B, Blanchardie P, Laboisse C, Lustenberger P, Denis MG (2001) Overexpression of the CD155 gene in human colorectal carcinoma. Gut 49(2):236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, Grassi J, Marcenaro S, Reymond N, Vitale M, Moretta L, Lopez M, Moretta A (2003) Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198(4):557–567. doi:10.1084/jem.20030788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Castriconi R, Dondero A, Corrias MV, Lanino E, Pende D, Moretta L, Bottino C, Moretta A (2004) Natural killer cell-mediated killing of freshly isolated neuroblastoma cells: critical role of DNAX accessory molecule-1-poliovirus receptor interaction. Cancer Res 64(24):9180–9184. doi:10.1158/0008-5472.CAN-04-2682

    Article  CAS  PubMed  Google Scholar 

  42. Chan CJ, Andrews DM, McLaughlin NM, Yagita H, Gilfillan S, Colonna M, Smyth MJ (2010) DNAM-1/CD155 interactions promote cytokine and NK cell-mediated suppression of poorly immunogenic melanoma metastases. J Immunol 184(2):902–911. doi:10.4049/jimmunol.0903225

    Article  CAS  PubMed  Google Scholar 

  43. Atsumi S, Matsumine A, Toyoda H, Niimi R, Iino T, Sudo A (2013) Prognostic significance of CD155 mRNA expression in soft tissue sarcomas. Oncol Lett 5(6):1771–1776. doi:10.3892/ol.2013.1280

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (No. 81202015), Jiangsu Provincial Special Program of Medical Science (BL2012020), and the Natural Science Foundation of the Jiangsu Province Higher Education Institutions (No. 12KJB320014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Gao or Junnian Zheng.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Zhao, W., Li, H. et al. Immunoreceptor TIGIT inhibits the cytotoxicity of human cytokine-induced killer cells by interacting with CD155. Cancer Immunol Immunother 65, 305–314 (2016). https://doi.org/10.1007/s00262-016-1799-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-016-1799-4

Keywords

Navigation