Abstract
Since decades, the main goal of tumor immunologists has been to increase the capacity of the immune system to mediate tumor regression. In this regard, one of the major focuses of cancer immunotherapy has been the design of vaccines promoting strong tumor-specific cytotoxic T lymphocyte responses in cancer patients. Here, dendritic cells (DCs) play a pivotal role as they are regarded as nature’s adjuvant and as such have become the natural agents for antigen delivery in order to finally elicit strong T cell responses (Villadangos and Schnorrer in Nat Rev Immunol 7:543–555, 2007; Melief in Immunity 29:372–383, 2008; Palucka and Banchereau in Nat Rev Cancer 12:265–277, 2012; Vacchelli et al. in Oncoimmunology 2:e25771, 2013; Galluzzi et al. in Oncoimmunology 1:1111–1134, 2012). Therefore, many investigators are actively pursuing the use of DCs as an efficient way of inducing anticancer immune responses. Nowadays, DCs can be generated at a large scale in closed systems, yielding sufficient numbers of cells for clinical application. In addition, with the identification of tumor-associated antigens, which are either selectively or preferentially expressed by tumors, a whole range of strategies using DCs for immunotherapy have been designed and tested in clinical studies. Despite the evidence that DCs loaded with tumor-associated antigens can elicit immune responses in vivo, clinical responses remained disappointingly low. Therefore, optimization of the cellular product and route of administration was urgently needed. Here, we review the path we have followed in the development of TriMixDC-MEL, a potent DC-based cellular therapy, discussing its development as well as further modifications and applications.
Similar content being viewed by others
Abbreviations
- API:
-
Active pharmaceutical ingredient
- caTLR4:
-
Constitutive active form of Toll-like receptor 4
- CD40L:
-
CD40 ligand
- CTLA-4:
-
Cytotoxic T-Lymphocyte antigen 4
- CTLs:
-
Cytotoxic T lymphocytes
- DCs:
-
Dendritic cells
- DTH:
-
Delayed-type hypersensitivity
- GM-CSF:
-
Granulocyte/macrophage colony-stimulating factor
- GMP:
-
Good manufacturing practice
- HBSS:
-
Hanks balanced salt solution
- HLA:
-
Human leukocyte antigen
- i.d.:
-
Intradermal
- i.n.:
-
Intranodal
- i.v.:
-
Intravenous
- mAbs:
-
Monoclonal antibodies
- MP:
-
Medicinal product
- NGS:
-
Next-generation sequencing
- SKILs:
-
Skin-infiltrating lymphocytes
- TH1:
-
T helper 1
- TLR:
-
Toll-like receptor
- Treg:
-
Regulatory T cell
- TriMixDC-MEL:
-
TriMixDCs co-electroporated with mRNA encoding a fusion of DC-LAMP and one of four melanoma-associated antigens: gp100, tyrosinase, MAGE-A3 and MAGE-C2
References
Villadangos JA, Schnorrer P (2007) Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol 7:543–555
Melief CJM (2008) Cancer immunotherapy by dendritic cells. Immunity 29:372–383
Palucka K, Banchereau J (2012) Cancer immunotherapy via dendritic cells. Nat Rev Cancer 12:265–277
Vacchelli E, Vitale I, Eggermont A et al (2013) Trial watch: dendritic cell-based interventions for cancer therapy. Oncoimmunology 2:e25771
Galluzzi L, Senovilla L, Vacchelli E et al (2012) Trial watch: dendritic cell-based interventions for cancer therapy. Oncoimmunology 1:1111–1134
Jonuleit H, Giesecke-Tuettenberg A, Tüting T et al (2001) A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 93:243–251
De Vries IJM, Lesterhuis WJ, Scharenborg NM et al (2003) Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res 9:5091–5100
Steinman RM, Nussenzweig MC (2002) Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A 99:351–358
Lutz MB, Schuler G (2002) Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 23:445–449
Cools N, Van Tendeloo VFI, Smits ELJM et al (2008) Immunosuppression induced by immature dendritic cells is mediated by TGF-beta/IL-10 double-positive CD4+ regulatory T cells. J Cell Mol Med 12:690–700
Enk AH (2005) Dendritic cells in tolerance induction. Immunol Lett 99:8–11
Jonuleit H, Kühn U, Müller G et al (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27:3135–3142
Mailliard RB, Wankowicz-Kalinska A, Cai Q et al (2004) Alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res 64:5934–5937
Vonderheide RH, Flaherty KT, Khalil M et al (2007) Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol 25:876–883
Turner JG, Rakhmilevich AL, Burdelya L et al (2001) Anti-CD40 antibody induces antitumor and antimetastatic effects: the role of NK cells. J Immunol 166:89–94
Nair S, McLaughlin C, Weizer A et al (2003) Injection of immature dendritic cells into adjuvant-treated skin obviates the need for ex vivo maturation. J Immunol 171:6275–6282
Adema GJ, de Vries IJM, Punt CJA, Figdor CG (2005) Migration of dendritic cell based cancer vaccines: in vivo veritas? Curr Opin Immunol 17:170–174
Calderhead DM, DeBenedette MA, Ketteringham H et al (2008) Cytokine maturation followed by CD40L mRNA electroporation results in a clinically relevant dendritic cell product capable of inducing a potent proinflammatory CTL response. J Immunother 31:731–741
DeBenedette MA, Calderhead DM, Tcherepanova IY et al (2011) Potency of mature CD40L RNA electroporated dendritic cells correlates with IL-12 secretion by tracking multifunctional CD8(+)/CD28(+) cytotoxic T-cell responses in vitro. J Immunother 34:45–57
Bonehill A, Tuyaerts S, Van Nuffel AMT et al (2008) Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther 16:1170–1180
Kikuchi T, Moore MA, Crystal RG (2000) Dendritic cells modified to express CD40 ligand elicit therapeutic immunity against preexisting murine tumors. Blood 96:91–99
Cisco RM, Abdel-Wahab Z, Dannull J et al (2004) Induction of human dendritic cell maturation using transfection with RNA encoding a dominant positive toll-like receptor 4. J Immunol 172:7162–7168
Borst J, Hendriks J, Xiao Y (2005) CD27 and CD70 in T cell and B cell activation. Curr Opin Immunol 17:275–281
Van Lint S, Van Nuffel AM, Wilgenhof S, et al. (2013) Priming of cytotoxic T lymphocyte responses by dendritic cells: induction of potent anti-tumor immune responses. Cytotoxic T lymphocytes Mech Dev Dis, Horizons i. Nova Science Publishers, p volume 51
Langenkamp A, Messi M, Lanzavecchia A, Sallusto F (2000) Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol 1:311–316
Bonehill A, Van Nuffel AMT, Corthals J et al (2009) Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin Cancer Res 15:3366–3375
Wilgenhof S, Van Nuffel AMT, Corthals J et al (2011) Therapeutic vaccination with an autologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma. J Immunother 34:448–456
Pen JJ, De Keersmaecker B, Maenhout SK et al (2013) Modulation of regulatory T cell function by monocyte-derived dendritic cells matured through electroporation with mRNA encoding CD40 ligand, constitutively active TLR4, and CD70. J Immunol 191:1976–1983
Fong L, Brockstedt D, Benike C et al (2001) Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol 166:4254–4259
Mullins DW, Sheasley SL, Ream RM et al (2003) Route of immunization with peptide-pulsed dendritic cells controls the distribution of memory and effector T cells in lymphoid tissues and determines the pattern of regional tumor control. J Exp Med 198:1023–1034
Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363:411–422
Wilgenhof S, Van Nuffel AMT, Benteyn D et al (2013) A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann Oncol 24:2686–2693
Van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied. J Exp Med 190:355–366
Neyns B, Wilgenhof S, Van Nuffel AMT et al (2011) A phase I clinical trial on the combined intravenous (IV) and intradermal (ID) administration of autologous TriMix-DC cellular therapy in patients with pretreated melanoma (TriMixIDIV). ASCO Meet Abstr 29:2519
Van Lint S, Heirman C, Thielemans K, Breckpot K (2013) mRNA: from a chemical blueprint for protein production to an off-the-shelf therapeutic. Hum Vaccin Immunother 9(2):265–274
Van Lint S, Goyvaerts C, Maenhout S et al (2012) Preclinical evaluation of TriMix and antigen mRNA-based antitumor therapy. Cancer Res 72:1661–1671
Kuhn AN, Diken M, Kreiter S et al (2011) Determinants of intracellular RNA pharmacokinetics: implications for RNA-based immunotherapeutics. RNA Biol 8:35–43
Probst J, Brechtel S, Scheel B et al (2006) Characterization of the ribonuclease activity on the skin surface. Genet Vaccines Ther 4:4
Diken M, Kreiter S, Selmi A et al (2011) Selective uptake of naked vaccine RNA by dendritic cells is driven by macropinocytosis and abrogated upon DC maturation. Gene Ther 18:702–708
Kreiter S, Diken M, Selmi A et al (2011) Tumor vaccination using messenger RNA: prospects of a future therapy. Curr Opin Immunol 23:399–406
Pascolo S (2006) Vaccination with messenger RNA. Methods Mol Med 127:23–40
Pascolo S (2004) Messenger RNA-based vaccines. Expert Opin Biol Ther 4:1285–1294
Bringmann A, Held SAE, Heine A, Brossart P (2010) RNA vaccines in cancer treatment. J Biomed Biotechnol 2010:623687
Kuhn AN, Beißert T, Simon P et al (2012) mRNA as a versatile tool for exogenous protein expression. Curr Gene Ther 12:347–361
Ulmer JB, Mason PW, Geall A, Mandl CW (2012) RNA-based vaccines. Vaccine 30:4414–4418
Kreiter S, Castle JC, Türeci O, Sahin U (2012) Targeting the tumor mutanome for personalized vaccination therapy. Oncoimmunology 1:768–769
Castle JC, Kreiter S, Diekmann J et al (2012) Exploiting the mutanome for tumor vaccination. Cancer Res 72:1081–1091
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674
Britten CM, Singh-Jasuja H, Flamion B et al (2013) The regulatory landscape for actively personalized cancer immunotherapies. Nat Biotechnol 31:880–882
Le Dieu R, Taussig DC, Ramsay AG et al (2009) Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts. Blood 114:3909–3916
Ramsay AG, Clear AJ, Kelly G et al (2009) Follicular lymphoma cells induce T-cell immunologic synapse dysfunction that can be repaired with lenalidomide: implications for the tumor microenvironment and immunotherapy. Blood 114:4713–4720
Ramsay AG, Johnson AJ, Lee AM et al (2008) Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest 118:2427–2437
Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723
Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454
Brahmer JR, Tykodi SS, Chow LQM et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465
Pruitt SK, Boczkowski D, de Rosa N et al (2011) Enhancement of anti-tumor immunity through local modulation of CTLA-4 and GITR by dendritic cells. Eur J Immunol 41:3553–3563
Acknowledgments
We thank the patients for their participation in the clinical studies, their families and caregivers, the staff of the Laboratorium of Molecular and Cellular Therapy (LMCT) and the Dendritic Cell Bank for their technical assistance and eTheRNA for providing mRNA. The work described was supported by grants from the Interuniversity Attraction Poles Program—Belgian State (P7/39)—Belgian Science Policy, the National Cancer Plan of the Federal Ministry of Health, the Stichting tegen Kanker, the Vlaamse Liga tegen Kanker, an Integrated Project and a Network of Excellence sponsored by the EU FP-6, an IWT-TBM program, the Fonds voor Wetenschappelijk Onderzoek Vlaanderen (FWO-Vlaanderen) and the Willy Gepts Wetenschappelijk Fonds of the UZ Brussel.
Conflict of interest
The use of dendritic cells electroporated with tumor antigen mRNA and TriMix is the topic of a patent (W2009/034172) on which Dr. A. Bonehill and Prof. Dr. K. Thielemans are filed as inventors. None of the authors receive any support or remuneration related to this platform. No potential conflict of interests were disclosed.
Author information
Authors and Affiliations
Corresponding author
Additional information
Sandra Van Lint and Sofie Wilgenhof contributed equally to this work.
This paper is a Focussed Research Review based on a presentation given at the 19th Danish Cancer Society Symposium in Copenhagen, Denmark, 23rd–25th September 2013, on the topic “Immunotherapy of Cancer—Present Status and Future Promise”. It is part of a CII series of Focussed Research Reviews and meeting report.
Rights and permissions
About this article
Cite this article
Van Lint, S., Wilgenhof, S., Heirman, C. et al. Optimized dendritic cell-based immunotherapy for melanoma: the TriMix-formula. Cancer Immunol Immunother 63, 959–967 (2014). https://doi.org/10.1007/s00262-014-1558-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00262-014-1558-3