[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Microbial endophytes: application towards sustainable agriculture and food security

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial endophytes are ubiquitous and exist in each recognised plant species reported till date. Within the host plant, the entire community of microbes lives non-invasively within the active internal tissues without causing any harm to the plant. Endophytes interact with their host plant via metabolic communication enables them to generate signal molecules. In addition, the host plant’s genetic recombination with endophytes helps them to imitate the host’s physicochemical functions and develop identical active molecules. Therefore, when cultured separately, they begin producing the host plant phytochemicals. The fungal species Penicillium chrysogenum has portrayed the glory days of antibiotics with the invention of the antibiotic penicillin. Therefore, fungi have substantially supported social health by developing many bioactive molecules utilised as antioxidant, antibacterial, antiviral, immunomodulatory and anticancerous agents. But plant-related microbes have emanated as fountainheads of biologically functional compounds with higher levels of medicinal perspective in recent years. Researchers have been motivated by the endless need for potent drugs to investigate alternate ways to find new endophytes and bioactive molecules, which tend to be a probable aim for drug discovery. The current research trends with these promising endophytic organisms are reviewed in this review paper.

Key points

Identified 54 important bioactive compounds as agricultural relevance

Role of genome mining of endophytes and “Multi-Omics” tools in sustainable agriculture

A thorough description and graphical presentation of agricultural significance of plant endophytes

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alam B, Lǐ J, Gě Q, Khan MA, Gōng J, Mehmood S, Yuán Y, Gǒng W (2021) Endophytic fungi: from symbiosis to secondary metabolite communications or vice versa? Front Plant Sci 12:791033

  • Adeleke BS, Babalola OO (2022) Meta-omics of endophytic microbes in agricultural biotechnology. Biocatal Agric Biotechnol 42:102332

  • Bacon CW, White J (2000) Microbial endophytes, CRC press, United States

  • Bai B, Vanderwall D, Li Y, Wang X, Poudel S, Wang H, Dey KK, Chen PC, Yang K, Peng J (2021) Proteomic landscape of Alzheimer’s disease: novel insights into pathogenesis and biomarker discovery. Mol Neurodegen 16:55

  • Balestrini R, Brunetti C, Cammareri M, Caretto S, Cavallaro V, Cominelli E, De Palma M, Docimo T, Giovinazzo G, Grandillo S, Locatelli F (2021) Strategies to modulate specialized metabolism in Mediterranean crops: from molecular aspects to field. Int J Mol Sci 22(6):2887. https://doi.org/10.3390/ijms22062887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauermeister A, Calil FA, das Pinto FCL, Medeiros TC, Almeida LC, Silva LJ, de Melo IS, Zucchi TD, Costa-Lotufo LV, Moraes LA (2019) Pradimicin-IRD from Amycolatopsis sp. IRD-009 and its antimicrobial and cytotoxic activities. J Nat Products 33(12):1713–1720

  • Bhalkar BN, Patil SM, Govindwar SP (2016) Camptothecine production by mixed fermentation of two endophytic fungi from Nothapodytes nimmoniana. Fungal Biol 120(6–7):873–883

    Article  CAS  PubMed  Google Scholar 

  • Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA (2014) A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet 10(4):e1004283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bunbamrung N, Supong K, Intaraudom C, Dramae A, Auncharoen P, Pittayakhajonwut P (2018) Anthrone derivatives from the terrestrial actinomycete, Actinomadura sp. BCC47066. Phytochem Lett 25:109–17

    Article  CAS  Google Scholar 

  • Carrell AA, Lawrence TJ, Cabugao KG, Carper DL, Pelletier DA, Lee JH, Jawdy SS, Grimwood J, Schmutz J, Hanson PJ, Shaw AJ (2022) Habitat adapted microbial communities mediate Sphagnum peatmoss resilience to warming. New Phytol 234:2111–2125. https://doi.org/10.1111/nph.18072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caruso G, Abdelhamid MT, Kalisz A (2020) Linking endophytic fungi to medicinal plants therapeutic activity. A Case Study on Asteraceae. Agriculture 10(7):286

    Article  CAS  Google Scholar 

  • Chalot M, Puschenreiter M (2021) Exploring plant rhizosphere, phyllosphere and endosphere microbial communities to improve the management of polluted sites. Front Microbiol 12:763566. https://doi.org/10.3389/fmicb.2021.763566

  • Chand K, Shah S, Sharma J, Paudel MR, Pant B (2020) Isolation, characterization, and plant growth-promoting activities of endophytic fungi from a wild orchid Vanda cristata. Plant Signal Behav 15(5):1744294. https://doi.org/10.1080/15592324.2020.1744294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandramouli K, Qian P-Y (2009) Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genom Proteom 2009:239204. https://doi.org/10.4061/2009/239204

  • Chen J, Ke-Xing Hu, Hou X-Q, Guo S-X (2011) Endophytic fungi assemblages from 10 Dendrobium medicinal plants (Orchidaceae). World J Microbiol Biotechnol 27(5):1009–1016

    Article  Google Scholar 

  • Chen J, Zhang LC, Xing YM, Wang YQ, Xing XK, Zhang DW, Liang HQ, Guo SX (2013) Diversity and taxonomy of endophytic xylariaceous fungi from medicinal plants of Dendrobium (Orchidaceae). PLoS ONE 8(3):e58268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XM, Dong HL, Hu KX, Sun ZR, Chen J, Guo SX (2010) Diversity and antimicrobial and plant-growth-promoting activities of endophytic fungi in Dendrobium loddigesii Rolfe. J Plant Growth Regul 29(3):328–337

    Article  CAS  Google Scholar 

  • Chithra S, Jasim B, Sachidanandan P, Jyothis M, Radhakrishnan EK (2014) Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine 21(4):534–540. https://doi.org/10.1016/j.phymed.2013.10.020

    Article  CAS  PubMed  Google Scholar 

  • Chlebek D, Pinski A, Żur J, Michalska J, Hupert-Kocurek K (2020) Genome mining and evaluation of the biocontrol potential of Pseudomonas fluorescens BRZ63, a new endophyte of oilseed rape (Brassica napus L.) against fungal pathogens. Int J Mol Sci 21(22):8740

    Article  CAS  PubMed Central  Google Scholar 

  • Compant S, Cambon MC, Vacher C, Mitter B, Samad A, Sessitsch A (2021) The plant endosphere world–bacterial life within plants. Environ Microbiol 23(4):1812–29

    Article  PubMed  Google Scholar 

  • Cozzolino F, Iacobucci I, Monaco V, Monti M (2021) Protein-DNA/RNA interactions: an overview of investigation methods in the -Omics era. J Proteome Res 20(6):3018–3030

  • Cui Y, Yi D, Bai X, Sun B, Zhao Y, Zhang Y (2012) Ginkgolide B produced endophytic fungus (Fusarium oxysporum) isolated from Ginkgo biloba.". Fitoterapia 83(5):913–920

    Article  CAS  PubMed  Google Scholar 

  • de Aldana BR, Arellano JB, Cuesta MJ, Mellado-Ortega E, González V, Zabalgogeazcoa I (2021) Screening fungal endophytes from a wild grass for growth promotion in tritordeum, an agricultural cereal. Plant Sci 303:110762. https://doi.org/10.1016/j.plantsci.2020.110762

    Article  CAS  Google Scholar 

  • Deshmukh SK, Mishra PD, Kulkarni-Almeida A, Verekar S, Sahoo MR, Periyasamy G, Goswami H, Khanna A, Balakrishnan A, Vishwakarma R (2009) Anti-inflammatory and anticancer activity of ergoflavin isolated from an endophytic fungus. Chem Biodivers 6(5):784–789. https://doi.org/10.1002/cbdv.200800103

    Article  CAS  PubMed  Google Scholar 

  • De Silva NI, Brooks S, Lumyong S, Hyde KD (2019) Use of endophytes as biocontrol agents. Fungal Biol Rev 33(2):133–148

    Article  Google Scholar 

  • De Souza JT, Silva AC, de Jesus Santos AF, Santos PO, Alves PS, Cruz-Magalhães V, Marbach PA, Loguercio LL (2021) Endophytic bacteria isolated from both healthy and diseased Agave sisalana plants are able to control the bole rot disease. Biol Control 157:104575

    Article  CAS  Google Scholar 

  • Deyett E, Rolshausen PE (2020) Endophytic microbial assemblage in grapevine. FEMS Microbiol Ecol 96(5):fiaa053

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Liu K, Zhang Y, Liu F (2017) De novo transcriptome assembly and characterization of the 10-hydroxycamptothecin-producing Xylaria sp. M71 following salicylic acid treatment. J Microbiol 55(11):871–876

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos GD, Gomes RR, Gonçalves R, Fornari G, Maia BHLNS, Schmidt-Dannert C, Gaascht F, Glienke C, Schneider GX, Colombo IR, Degenhardt-Goldbach J, Pietsch JLM, Costa-Ribeiro MCV, Vicente VA (2021) Molecular identification and antimicrobial activity of foliar endophytic fungi on the brazilian pepper tree (Schinus terebinthifolius) reveal new species of diaporthe. Curr Microbiol 78(8):3218–3229. https://doi.org/10.1007/s00284-021-02582-x

    Article  CAS  PubMed  Google Scholar 

  • Doty SL, Freeman JL, Cohu CM, Burken JG, Firrincieli A, Simon A, Khan Z, Isebrands JG, Lukas J, Blaylock MJ (2017) Enhanced degradation of TCE on a superfund site using endophyte-assisted poplar tree phytoremediation. Environ Sci Technol 51(17):10050–10058. https://doi.org/10.1021/acs.est.7b01504

    Article  CAS  PubMed  Google Scholar 

  • Dubey A, Malla MA, Kumar A, Dayanandan S, Khan ML (2020) Plants endophytes: unveiling hidden agenda for bioprospecting toward sustainable agriculture. Critical Rev Botechnol 40(8):1210–1231

    Article  CAS  Google Scholar 

  • Dwibedi V, Rath SK, Prakash R, Saxena S (2021) Response surface statistical optimization of fermentation parameters for resveratrol production by the endophytic fungus Arcopilus aureus and its tyrosinase inhibitory activity.". Biotechnol Let 43(3):627–644

    Article  CAS  Google Scholar 

  • Dwibedi V, Saxena S (2018) Arcopilus aureus, a resveratrol-producing endophyte from Vitis vinifera. Appl Biochem Biotechnol 186(2):476–495

    Article  CAS  PubMed  Google Scholar 

  • Dwibedi V, Saxena S (2019) Diversity and phylogeny of resveratrol-producing culturable endophytic fungi from Vitis species in India. 3 Biotech 9(5):1–8

    Article  Google Scholar 

  • Dwibedi V, Saxena S (2020) In vitro anti-oxidant, anti-fungal and anti-staphylococcal activity of resveratrol-producing endophytic fungi. Proc Natl Acad Sci India B: Biol Sci 90(1):207–219

    CAS  Google Scholar 

  • Dwibedi V, Saxena S (2022) Effect of precursor feeding, dietary supplementation, chemical elicitors and co-culturing on resveratrol production by Arcopilus aureus. Prep Biochem Biotechnol 52(4):404–412

    Article  CAS  PubMed  Google Scholar 

  • Eida AA, Bougouffa S, Alam I, Hirt H, Saad MM (2020) Complete genome sequence of Paenibacillus sp. JZ16, a plant growth promoting root endophytic bacterium of the desert halophyte Zygophyllum simplex. Curr Microbiol 77(6):1097–1103

    Article  CAS  PubMed  Google Scholar 

  • Eke P, Kumar A, Sahu KP, Wakam LN, Sheoran N, Ashajyothi M, Patel A, Fekam FB (2019) Endophytic bacteria of desert cactus (Euphorbia trigonas mill) confer drought tolerance and induce growth promotion in tomato (Solanum lycopersicum L.). Microbiol Res 228:126302. https://doi.org/10.1016/j.micres.2019.126302

    Article  CAS  PubMed  Google Scholar 

  • Ek-Ramos MJ, Zhou W, Valencia CU, Antwi JB, Kalns LL, Morgan GD, Kerns DL, Sword GA (2013) Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum). PLoS ONE 8(6):e66049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eslahi N, Kowsari M, Motallebi M, Zamani MR, Moghadasi Z (2020) Influence of recombinant Trichoderma strains on growth of bean (Phaseolus vulgaris L) by increased root colonization and induction of root growth related genes. Sci Hortic 261:108932

    Article  CAS  Google Scholar 

  • Elnahal AS, El-Saadony MT, Saad AM, Desoky ES, El-Tahan AM, Rady MM, AbuQamar SF, El-Tarabily KA (2022) The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: a review. Eur J Plant Pathol 162:759–792. https://doi.org/10.1007/s10658-021-02393-7

  • Falade AO, Adewole KE, Ekundayo TC (2021) Aptitude of endophytic microbes for production of novel biocontrol agents and industrial enzymes towards agro-industrial sustainability. Beni-Suef Univ J Basic Appl Sci 10(1):1–14

    Article  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76(5):1145–1152. https://doi.org/10.1007/s00253-007-1077-7

    Article  CAS  PubMed  Google Scholar 

  • Fouda A, Eid AM, Elsaied A, El-Belely EF, Barghoth MG, Azab E, Gobouri AA, Hassan SE (2021) Plant growth-promoting Endophytic bacterial community inhabiting the leaves of Pulicaria incisa (lam.) DC inherent to arid regions. Plants (Basel) 10(1):76. https://doi.org/10.3390/plants10010076

    Article  CAS  Google Scholar 

  • Gao Y, Zeng XD, Ren B, Zeng JR, Xu T, Yang YZ, Hu XC, Zhu ZY (2020) Antagonistic activity against rice blast disease and elicitation of host-defence response capability of an endophytic Streptomyces albidoflavus OsiLf-2. Plant Pathol 69(2):259–271

    Article  CAS  Google Scholar 

  • Ghaste M, Mistrik R, Shulaev V (2016) Applications of Fourier Transform Ion Cyclotron Resonance (FT-ICR) and orbitrap based high resolution mass spectrometry in metabolomics and lipidomics. Int J Mol Sci 17(6):816

  • Ghiasvand M, Makhdoumi A, Matin MM, Vaezi J (2020) Exploring the bioactive compounds from endophytic bacteria of a medicinal plant: Ephedra foliata (Ephedrales: Ephedraceae). Adv Tradit Med 20(1):61–70. https://doi.org/10.1007/s13596-019-00410-z

    Article  CAS  Google Scholar 

  • Gos FMWR, Savi DC, Shaaban KA, Thorson JS, Aluizio R, Possiede YM, Rohr J, Glienke C (2017) Antibacterial activity of endophytic actinomycetes isolated from the medicinal plant vochysia divergens (pantanal, Brazil). Front Microbiol 8:1642. https://doi.org/10.3389/fmicb.2017.01642

    Article  PubMed  PubMed Central  Google Scholar 

  • Grigoletto DF, Correia AM, Abraham WR, Rodrigues A, Assis MA, Ferreira AG, Massaroli M, De Lira SP (2019) Secondary metabolites produced by endophytic fungi: novel antifungal activity of fumiquinone B.". Acta Sci Biol Sci 41:48785

    Article  CAS  Google Scholar 

  • Gu Y, Wang Y, Sun Y, Zhao K, Xiang Q, Yu X, Zhang X, Chen Q (2018a) Genetic diversity and characterization of arsenic-resistant endophytic bacteria isolated from Pteris vittata, an arsenic hyperaccumulator. BMC Microbiol 18(1):1

    Article  CAS  Google Scholar 

  • Gu CB, Ma H, Ning WJ, Niu LL, Han HY, Yuan XH, Fu YJ (2018) Characterization, culture medium optimization and antioxidant activity of an endophytic vitexin-producing fungus Dichotomopilus funicola Y3 from pigeon pea [Cajanus cajan (L.) Millsp.]. J Appl Microbiol 125(4):1054–1065

    Article  CAS  PubMed  Google Scholar 

  • Gul Jan F, Hamayun M, Hussain A, Jan G, Iqbal A, Khan A, Lee IJ (2019) An endophytic isolate of the fungus Yarrowia lipolytica produces metabolites that ameliorate the negative impact of salt stress on the physiology of maize. BMC Microbiol 19(1):1

    Article  Google Scholar 

  • Guo L, Lin J, Niu S, Liu S, Liu L (2020) Pestalotiones A-D: four new secondary metabolites from the plant endophytic fungus Pestalotiopsis theae. Molecules 25(3):470

    Article  CAS  PubMed Central  Google Scholar 

  • Gupta R, Anand G, Gaur R, Yadav D (2021) Plant–microbiome interactions for sustainable agriculture: a review. Physiol Mol Biol Plants. 27:165–179. https://doi.org/10.1007/s12298-021-00927-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Haidar B, Ferdous M, Fatema B, Ferdous AS, Islam MR, Khan H (2018) Population diversity of bacterial endophytes from jute (Corchorus olitorius) and evaluation of their potential role as bioinoculants. Microbiol Res 208:43–53. https://doi.org/10.1016/j.micres.2018.01.008

    Article  PubMed  Google Scholar 

  • Hamayun M, Hussain A, Khan SA, Kim HY, Khan AL, Waqas M, Irshad M, Iqbal A, Rehman G, Jan S, Lee IJ (2017) Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front Microbiol 20(8):686

    Article  Google Scholar 

  • Hassan SE (2017) Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J Adv Res 8(6):687–695. https://doi.org/10.1016/j.jare.2017.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail MA, Amin MA, Eid AM, Hassan SE, Mahgoub HAM, Lashin I, Abdelwahab AT, Azab E, Gobouri AA, Elkelish A, Fouda A (2021) Comparative study between exogenously applied plant growth hormones versus metabolites of microbial endophytes as plant growth-promoting for phaseolus vulgaris L. Cells 10(5):1059. https://doi.org/10.3390/cells10051059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izuta S, Kosaka S, Kawai M, Miyano R, Matsuo H, Matsumoto A, Nonaka K, Takahashi Y, Ōmura S, Nakashima T (2018) Dipyrimicin A and B, microbial compounds isolated from Amycolatopsis sp. K16–0194. J Antibiot 71(5):535–7

    Article  CAS  Google Scholar 

  • Jog R, Nareshkumar G, Rajkumar S (2012) Plant growth promoting potential and soil enzyme production of the most abundant Streptomyces spp. from wheat rhizosphere. J Appl Microbiol 113(5):1154–1164

    Article  CAS  PubMed  Google Scholar 

  • Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS ONE 6(6):e20396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joo HS, Deyrup ST, Shim SH (2021) Endophyte-produced antimicrobials: a review of potential lead compounds with a focus on quorum-sensing disruptors. Phytochem Rev 20(3):543–568

    Article  CAS  Google Scholar 

  • Kaaniche F, Hamed A, Abdel-Razek AS, Wibberg D, Abdissa N, El Euch IZ, Allouche N, Mellouli L, Shaaban M, Sewald N (2019) Bioactive secondary metabolites from new endophytic fungus Curvularia. sp isolated from Rauwolfia macrophylla. PLoS One 14(6):e0217627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang X, Liu C, Shen P, Hu L, Lin R, Ling J, Xiong X, Xie B, Liu D (2019) Genomic characterization provides new insights into the biosynthesis of the secondary metabolite Huperzine A in the endophyte Colletotrichum gloeosporioides Cg01. Front Microbiol 8(9):3237

    Article  Google Scholar 

  • Khalil AMA, Hassan SE, Alsharif SM, Eid AM, Ewais EE, Azab E, Gobouri AA, Elkelish A, Fouda A (2021) Isolation and characterization of fungal endophytes isolated from medicinal plant ephedra pachyclada as plant growth-promoting. Biomolecules 11(2):140. https://doi.org/10.3390/biom11020140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalmuratova I, Choi DH, Woo JR, Jeong MJ, Oh Y, Kim YG, Lee IJ, Choo YS, Kim JG (2020) Diversity and plant growth-promoting effects of fungal endophytes isolated from salt-tolerant plants. J Microbiol Biotechnol 30(11):1680–1687. https://doi.org/10.4014/jmb.2006.06050

    Article  CAS  PubMed  Google Scholar 

  • Khunnamwong P, Lertwattanasakul N, Jindamorakot S, Suwannarach N, Matsui K, Limtong S (2020) Evaluation of antagonistic activity and mechanisms of endophytic yeasts against pathogenic fungi causing economic crop diseases. Folia Microbiol 65(3):573–590

    Article  CAS  Google Scholar 

  • Kubin A, Wierrani F, Burner U, Alth G, Grünberger W (2005) Hypericin-the facts about a controversial agent. Curr Pharm Des 11(2):233–253. https://doi.org/10.2174/1381612053382287

    Article  CAS  PubMed  Google Scholar 

  • Kumara PM, Shweta S, Vasanthakumari MM, Sachin N, Manjunatha BL, Jadhav SS, Ravikanth G, Ganeshaiah KN, Shaanker RU (2014) Endophytes and plant secondary metabolite synthesis: molecular and evolutionary perspective. In Advances in endophytic research, 1st edn. Springer, pp 177–190. https://doi.org/10.1007/978-81-322-1575-2_9

  • Kumar CG (2020) Bioprospecting for secondary metabolites of family Botryosphaeriaceae from a biotechnological perspective. New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, pp 167–286. https://doi.org/10.1016/B978-0-12-821008-6.00016-5

  • Kumari A, Singh D, Kumar S (2017) Biotechnological interventions for harnessing podophyllotoxin from plant and fungal species: current status, challenges, and opportunities for its commercialization. Crit Rev Biotechnol 37(6):739–753

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Zühlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis. J Nat Pro 74(4):764–775

  • Kushwaha RK, Singh S, Pandey SS, Kalra A, Vivek Babu CS (2019) Innate endophytic fungus, Aspergillus terreus as biotic elicitor of withanolide a in root cell suspension cultures of Withania somnifera. Mol Biol Rep 46(2):1895–1908. https://doi.org/10.1007/s11033-019-04641-w

    Article  CAS  PubMed  Google Scholar 

  • Lahlali R, Ibrahim DS, Belabess Z, Roni MZ, Radouane N, Vicente CS, Menéndez E, Mokrini F, Barka EA, e Mota MG, Peng G (2021) High-throughput molecular technologies for unraveling the mystery of soil microbial community: challenges and future prospects. Heliyon 7(10):e08142

  • Lata R, Chowdhury S, Gond SK, White JF Jr (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66(4):268–76

    Article  CAS  PubMed  Google Scholar 

  • Latz MA, Kerrn MH, Sørensen H, Collinge DB, Jensen B, Brown JK, Madsen AM, Jørgensen HJ (2021) Succession of the fungal endophytic microbiome of wheat is dependent on tissue-specific interactions between host genotype and environment. Sci Total Environ 759:143804

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhao GZ, Varma A, Qin S, Xiong Z, Huang HY, Zhu WY, Zhao LX, Xu LH, Zhang S, Li WJ (2012) An endophytic Pseudonocardia species induces the production of artemisinin in Artemisia annua. PLoS ONE 7(12):e51410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Chen F (2020) Effects of mrpigG on development and secondary metabolism of Monascus ruber M7. J Fungi (Basel) 6(3):156. https://doi.org/10.3390/jof6030156

    Article  CAS  Google Scholar 

  • Lingua G, Anastasia F, Todeschini V (2020) Study of the growth, artemisinin production and leaf volatilome of some micropropagated Artemisia annua clones inoculated or not with beneficial soil microorganisms. Dissertation, University Eastern Piedmont

  • Liu A, Ku YS, Contador CA, Lam HM (2020) The impacts of domestication and agricultural practices on legume nutrient acquisition through symbiosis with rhizobia and arbuscular mycorrhizal fungi. Front Gen. 11:583954. https://doi.org/10.3389/fgene.2020.583954

  • Lorence A, Medina-Bolivar F, Nessler CL (2004) Camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Rep 22(6):437–441

    Article  CAS  PubMed  Google Scholar 

  • Ludwig-Müller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Let 37(7):1325–1334

    Article  CAS  Google Scholar 

  • Lugtenberg BJ, Caradus JR, Johnson LJ (2016) Fungal endophytes for sustainable crop production. FEM Microbiol Ecol 92:12. https://doi.org/10.1093/femsec/fiw194

    Article  CAS  Google Scholar 

  • Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P (2017) Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Poll Res 24(4):3315–3335

    Article  CAS  Google Scholar 

  • Majeed A, Majeed M, Thajuddin N, Arumugam S, Ali F, Beede K, Adams SJ, Gnanamani M (2019) Bioconversion of curcumin into calebin-A by the endophytic fungus Ovatospora brasiliensis EPE-10 MTCC 25236 associated with Curcuma caesia. AMB Express 9(1):1–13

    Article  CAS  Google Scholar 

  • Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5(4):359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantzoukas S, Lagogiannis I (2019) Endophytic colonization of pepper (Capsicum annum) controls aphids (Myzus persicae Sulzer). Appl Sci 9(11):2239

    Article  CAS  Google Scholar 

  • Masenya K, Thompson GD, Tekere M, Makhalanyane TP, Pierneef RE, Rees DJ (2021) Pathogen infection influences a distinct microbial community composition in sorghum RILs. Plant Soil 463(1):555–72

    Article  CAS  Google Scholar 

  • Mastan A, Bharadwaj R, Kushwaha RK, Vivek Babu CS (2019) Functional fungal Endophytes in Coleus forskohlii regulate Labdane Diterpene biosynthesis for elevated Forskolin accumulation in roots. Microb Ecol 78(4):914–926. https://doi.org/10.1007/s00248-019-01376-w

    Article  CAS  PubMed  Google Scholar 

  • Mburu SW, Koskey G, Njeru EM, Maingi JM (2021) Revitalization of bacterial endophytes and rhizobacteria for nutrients bioavailability in degraded soils to promote crop production. AIMS Agric Food 6(2):496–524

    Article  Google Scholar 

  • Meena H, Hnamte S, Siddhardha B (2019) Secondary metabolites from endophytic fungi: chemical diversity and application. Advances in Endophytic Fungal Research, 1st edn. Springer, pp 145–169. https://doi.org/10.1007/978-3-030-03589-1_7

  • Mishra S, Bhardwaj P, Sharma S (2022) Metabolomic insights into endophyte-derived bioactive compounds. Front Microbiol 13:835931

  • Misra BB (2021) New software tools, databases, and resources in metabolomics: updates from 2020. Metabolomics 17(5):1–24. https://doi.org/10.1007/s11306-021-01796-1

    Article  CAS  Google Scholar 

  • Mitra SS, Biswas P, Mukherjee A, Nongdam P, Pandey DK, Dey A (2021) Endophytes producing bioactive compounds from Piper spp.: a review on utilization, bottlenecks, and future perspectives. Volatiles Metab Microb, 1st edn. Academic Press, pp 429–48. https://doi.org/10.1016/B978-0-12-824523-1.00017-1

  • Mousa WK, Shearer C, Limay-Rios V, Ettinger CL, Eisen JA, Raizada MN (2016) Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum. Nat Microbiol 1:16167. https://doi.org/10.1038/nmicrobiol.2016.167

    Article  CAS  PubMed  Google Scholar 

  • Naveed M, Mitter B, Yousaf S, Pastar M, Afzal M, Sessitsch A (2014) The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biol Fertil Soils 50(2):249–262. https://doi.org/10.1007/s00374-013-0854-y

    Article  CAS  Google Scholar 

  • Ngamau CN, Matiru VN, Tani A, Muthuri CW (2012) Isolation and identification of endophytic bacteria of bananas (Musa spp.) in Kenya and their potential as biofertilizers for sustainable banana production. African J Microb Res 6(34):6414–6422 http://hdl.handle.net/123456789/1485

    CAS  Google Scholar 

  • Ofek-Lalzar M, Gur Y, Ben-Moshe S, Sharon O, Kosman E, Mochli E, Sharon A (2016) Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis. FEMS Microbiol Ecol 92(10):fiw152

    Article  PubMed  CAS  Google Scholar 

  • Osman M, Stigloher C, Mueller MJ, Waller F (2020) An improved growth medium for enhanced inoculum production of the plant growth-promoting fungus Serendipita indica. Plant Methods 16:39. https://doi.org/10.1186/s13007-020-00584-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palwe SD, Borde MY, Sonawane HB (2021) Endophytic fungi: a source of potential anticancer compounds. Stud Fungi 6(1):188–203

    Article  Google Scholar 

  • Pan Y, Zheng W, Yang S (2020) Chemical and activity investigation on metabolites produced by an endophytic fungi Psathyrella candolleana from the seed of Ginkgo biloba. Nat Prod 34(21):3130–3133. https://doi.org/10.1080/14786419.2019.1607335

    Article  CAS  Google Scholar 

  • Parthibhan S, Rao MV, Kumar TS (2017) Culturable fungal endophytes in shoots of Dendrobium aqueum Lindley–an imperiled orchid. Ecol Gen Genom 3:18–24

    Google Scholar 

  • Patturaj M, Kannan N, Warrier RR, Jacob JP, Yasodha R (2021) Molecular diversity and functional prediction of foliar endophytic bacteria in Tectona grandis (Teak) Estimated by 16S rDNA Sequence Analysis. Philip J Sci 150(6B):1677–87

    Article  Google Scholar 

  • Peay KG, Kennedy PG, Talbot JM (2016) Dimensions of biodiversity in the Earth mycobiome. Nat Rev Microbiol 14(7):434–447

    Article  CAS  PubMed  Google Scholar 

  • Pentimone I, Colagiero M, Rosso LC, Ciancio A (2020) Omics applications: towards a sustainable protection of tomato. Appl Microbiol Biotechnol 104(10):4185–4195

  • Pham VT, Rediers H, Ghequire MG, Nguyen HH, De Mot R, Vanderleyden J, Spaepen S (2017) The plant growth-promoting effect of the nitrogen-fixing endophyte Pseudomonas stutzeri A15. Arch Microbiol 199(3):513–517. https://doi.org/10.1007/s00203-016-1332-3

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Ann Rev Phyto. 1(52):347–75. https://doi.org/10.1146/annurev-phyto-082712-102340

    Article  CAS  Google Scholar 

  • Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A Review Biol Fertil Soil 51(4):403–415

    Article  CAS  Google Scholar 

  • Pu X, Qu X, Chen F, Bao J, Zhang G, Luo Y (2013) Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl Microbiol Biotechnol 97(21):9365–9375

    Article  CAS  PubMed  Google Scholar 

  • Qin JC, Zhang YM, Gao JM, Bai MS, Yang SX, Laatsch H, Zhang AL (2009) Bioactive metabolites produced by Chaetomium globosum, an endophytic fungus isolated from Ginkgo biloba. Bioorg Med Chem Lett 19(6):1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Yan P, Zhang X, Guo X, Hui J, Cao S, Wang X, Wang C, Wang H, Qu B, Fan G (2020) NRT1. 1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnol. https://doi.org/10.1038/s41587-019-0104-4

  • Raghu S, Kumar S, Suyal DC, Sahu B, Kumar V, Soni R (2021) Molecular tools to explore rhizosphere microbiome. In: Microbial Metatranscriptomics belowground. Springer, Singapore, pp 37–57. https://doi.org/10.1007/978-981-15-9758-9_2

    Chapter  Google Scholar 

  • Rai S, Solanki AC, Anal AK (2021) Modern biotechnological tools: an opportunity to discover complex phytobiomes of horticulture crops. Microb Plant Health. 1st edn. Academic Press1:85–124. https://doi.org/10.1016/B978-0-12-819715-8.00004-5

  • Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N, Dhaliwal HS, Saxena AK (2020) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Ant Van Leeu 113:1075–1107

    Article  CAS  Google Scholar 

  • Rinschen MM, Ivanisevic J, Giera M, Siuzdak G (2019) Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol 20(6):353–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ripa FA, Cao WD, Tong S, Sun JG (2019) Assessment of plant growth promoting and abiotic stress tolerance properties of wheat Endophytic Fungi. Biomed Res Int 2019:6105865. https://doi.org/10.1155/2019/6105865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan Q, Patel G, Wang J, Luo E, Zhou W, Sieniawska E, Hao X, Kai G (2021) Current advances of endophytes as a platform for production of anti-cancer drug camptothecin. Food Chem Toxicol 151:112113

    Article  CAS  PubMed  Google Scholar 

  • Rungin S, Indananda C, Suttiviriya P, Kruasuwan W, Jaemsaeng R, Thamchaipenet A (2012) Plant growth enhancing effects by a siderophore-producing endophytic Streptomycete isolated from a Thai jasmine rice plant (Oryza sativa L. cv. KDML105). Antonie Leeuwenhoek 102(3):463–472. https://doi.org/10.1007/s10482-012-9778-z

    Article  CAS  PubMed  Google Scholar 

  • Rustamova N, Bozorov K, Efferth T, Yili A (2020) Novel secondary metabolites from endophytic fungi: synthesis and biological properties. Phytochem Rev 19(2):425–448

    Article  CAS  Google Scholar 

  • Sang X, Yang M, Su J (2020) Research on endophytic fungi for producing huperzine a on a large-scale. Crit Rev Microbiol 46(6):654–664. https://doi.org/10.1080/1040841X.2020.1819771

    Article  CAS  PubMed  Google Scholar 

  • Sarhan MS, Hamza MA, Youssef HH, Patz S, Becker M, ElSawey H, Nemr R, Daanaa HS, Mourad EF, Morsi AT, Abdelfadeel MR (2019) Culturomics of the plant prokaryotic microbiome and the dawn of plant-based culture media–a review. J Adv Res 19:15–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmeda-Hirschmann G, Hormazabal E, Astudillo L, Rodriguez J, Theoduloz C (2005) Secondary metabolites from endophytic fungi isolated from the Chilean gymnosperm Prumnopitys andina (Lleuque). World J Microbiol Biotechnol 21(1):27–32

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? Microbial root endophytes, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-33526-9_1

  • Schulz B, Sucker J, Aust HJ, Krohn K, Ludewig K, Jones PG, Döring D (1995) Biologically active secondary metabolites of endophytic Pezicula species. Mycol Res 99(8):1007–1015

    Article  CAS  Google Scholar 

  • Shah S, Shrestha R, Maharjan S, Selosse MA, Pant B (2018) Isolation and characterization of plant growthpromoting endophytic fungi from the roots of Dendrobium moniliforme. Plants 8(1):5. https://doi.org/10.3390/plants8010005

    Article  CAS  PubMed Central  Google Scholar 

  • Sharma D, Pramanik A, Agrawal PK (2016) Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D. Don. 3 Biotech 6(2):1–14

    Article  Google Scholar 

  • Sharma V, Sharma A, Malannavar AB, Salwan R (2020) Molecular aspects of biocontrol species of Streptomyces in agricultural crops. Molecular aspects of plant beneficial microbes in agriculture, 1st edn. Elsevier. pp 89–109. https://doi.org/10.1016/B978-0-12-818469-1.00008-0

  • Shinozuka H, Hettiarachchige IK, Shinozuka M, Cogan NO, Spangenberg GC, Cocks BG, Forster JW (2017) Sawbridge TI (2017) Horizontal transfer of a ß-1, 6-glucanase gene from an ancestral species of fungal endophyte to a cool-season grass host. Sci Rep 7(1):1–1

    Article  CAS  Google Scholar 

  • Singh A, Singh DK, Kharwar RN, White JF, Gond SK (2021a) Fungal endophytes as efficient sources of plant-derived bioactive compounds and their prospective applications in natural product drug discovery: insights, avenues, and challenges. Microorgan 9(1):197

    Article  CAS  Google Scholar 

  • Singh MK, Sahni S, Narang A (2021b) Impact of climate change on functional AM fungi in rhizosphere. In Climate Change and the Microbiome (pp. 397–416). Springer, Cham

  • Singh R, Dubey AK (2018) Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Front Microbiol 8(9):1767. https://doi.org/10.3389/fmicb.2018.01767

    Article  Google Scholar 

  • Slama HB, Cherif-Silini H, Bouket AC, Silini A, Alenezi FN, Luptakova L, Vallat A, Belbahri L (2021) Biotechnology and bioinformatics of endophytes in biocontrol, bioremediation, and plant growth promotion. Endophytes: Miner Nutr Manag 3: 181–205

  • Snook ME, Mitchell T, Hinton DM, Bacon CW (2009) Isolation and characterization of Leu7-surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides. J Agric Food Chem 57:4287–4292. https://doi.org/10.1021/jf900164h

    Article  CAS  PubMed  Google Scholar 

  • Srinivasa C, Mellappa G, Patil SM, Ramu R, Shreevatsa B, Dharmashekar C, Kollur SP, Syed A, Shivamallu C (2022) Plants and endophytes–a partnership for the coumarin production through the microbial systems. Mycology 6:1–4

    CAS  Google Scholar 

  • Strobel G (2011) Muscodor species-endophytes with biological promise. Phytochem Rev 10(2):165–172

    Article  CAS  Google Scholar 

  • Strobel G (2018) The emergence of endophytic microbes and their biological promise. J Fungi 4(2):57

    Article  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67(2):257–268

    Article  CAS  PubMed  Google Scholar 

  • Stroheker S, Dubach V, Vögtli I, Sieber TN (2021) Investigating host preference of root endophytes of three European tree species, with a focus on members of the Phialocephala fortiniiAcephala applanata species complex (PAC). J Fungi 7(4):317

    Article  Google Scholar 

  • Sudhakar T, Dash SK, Rao RR, Srinivasan R, Zacharia S, Atmanand M, Subramaniam BR, Nayak S (2013) Do endophytic fungi possess pathway genes for plant secondary metabolites. Curr Sci 104(2):178

    Google Scholar 

  • Suryanarayanan T (2017) Fungal Endophytes: an Eclectic Review. Kavaka 48(1):1–9

    Article  Google Scholar 

  • Tamošiūnė I, Stanienė G, Haimi P, Stanys V, Rugienius R, Baniulis D (2018) Endophytic Bacillus and Pseudomonas spp modulate apple shoot growth, cellular redox balance, and protein expression under in vitro conditions. Front Plant Sci 9:889. https://doi.org/10.3389/fpls.2018.00889

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanapichatsakul C, Khruengsai S, Monggoot S, Pripdeevech P (2019) Production of eugenol from fungal endophytes Neopestalotiopsis sp. and Diaporthe sp. isolated from Cinnamomum loureiroi leaves. PeerJ 7:e6427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang L, Hamid Y, Zehra A, Shohag MJ, He Z, Yang X (2020) Endophytic inoculation coupled with soil amendment and foliar inhibitor ensure phytoremediation and argo-production in cadmium contaminated soil under oilseed rape-rice rotation system. Sci Total Environ 748:142481

    Article  CAS  PubMed  Google Scholar 

  • Tavares MJ, Nascimento FX, Glick BR, Rossi MJ (2018) The expression of an exogenous ACC deaminase by the endophyte Serratia grimesii BXF 1 promotes the early nodulation and growth of common bean. Lett Appl Microbiol 66(3):252–259. https://doi.org/10.1111/lam.12847

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK (2020) Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol 18(11):607–621

    Article  CAS  PubMed  Google Scholar 

  • Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7(1):40–50

    Article  Google Scholar 

  • Turbat A, Rakk D, Vigneshwari A, Kocsubé S, Thu H, Szepesi Á, Bakacsy L, D. Škrbić B, Jigjiddorj EA, Vágvölgyi C, Szekeres A (2020) Characterization of the plant growth-promoting activities of endophytic fungi isolated from Sophora flavescens. Microorganisms 8(5):683. https://doi.org/10.3390/microorganisms8050683

  • Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, Singh BP, Mudili V, Gupta VK, Siddaiah CN, Chowdappa S (2018) Endophytic fungi—alternative sources of cytotoxic compounds: a review. Front Pharmacol 9:309. https://doi.org/10.3389/fphar.2018.00309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Meij A, Worsley SF, Hutchings MI, van Wezel GP (2017) Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 41(3):392–416

    Article  PubMed  CAS  Google Scholar 

  • Valletta A, Iozia LM, Leonelli F (2021) Impact of environmental factors on stilbene biosynthesis. Plants 10(1):90

    Article  CAS  PubMed Central  Google Scholar 

  • Vega Hurtado C (2020) Evaluation of the symbiotic relation between endophyte and poplar trees exposed to landfill leachate. Dissertation, Missouri University of Science and Technology

  • Vinale F, Nicoletti R, Lacatena F, Marra R, Sacco A, Lombardi N, d’Errico G, Digilio MC, Lorito M, Woo SL (2017) Secondary metabolites from the endophytic fungus Talaromyces pinophilus. Nat Prod Res 31(15):1778–1785

    Article  CAS  PubMed  Google Scholar 

  • Vurukonda SS, Giovanardi D, Stefani E (2018) Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int J Mol Sci 19(4):952

    Article  PubMed Central  CAS  Google Scholar 

  • Vurukonda SS, Giovanadri D, Stefani E (2021) Growth promotion and biocontrol activity of endophytic Streptomyces spp. Emilio 1(2021):1–55. document: http://hdl.handle.net/11380/1248582

  • Wang HW, Zhang W, Su CL, Zhu H, Dai CC (2015) Biodegradation of the phytoestrogen luteolin by the endophytic fungus Phomopsis liquidambari. Biodegradation 26(3):197–210. https://doi.org/10.1007/s10532-015-9727-4

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Clark NM, Nolan TM, Song G, Bartz PM, Liao CY, Montes-Serey C, Katz E, Polko JK, Kieber JJ, Kliebenstein DJ (2022a) Integrated omics reveal novel functions and underlying mechanisms of the receptor kinase FERONIA in Arabidopsis thaliana. Plant Cell 34(7):2594–2614. https://doi.org/10.1093/plcell/koac111

  • Wang L, Linares-Otoya V, Liu Y, Mettal U, Marner M, Armas-Mantilla L, Willbold S, Kurtán T, Linares-Otoya L, Schäberle TF (2022b) Discovery and biosynthesis of antimicrobial phenethylamine alkaloids from the marine Flavobacterium Tenacibaculum discolor sv11. J Nat Products 85(4):1039–1051. https://doi.org/10.1021/acs.jnatprod.1c01173

  • Waghunde RR, Shelake RM, Shinde MS, Hayashi H (2017) Endophyte microbes: a weapon for plant health management. In Microorganisms for green revolution, 6th edn. Springer, Singapore, pp. 303–325. https://doi.org/10.1007/978-981-10-6241-4_16

  • Weyens N, Beckers B, Schellingen K, Ceulemans R, Van der Lelie D, Newman L, Taghavi S, Carleer R, Vangronsveld J (2015) The potential of the Ni-resistant TCE-degrading Pseudomonas putida W619-TCE to reduce phytotoxicity and improve phytoremediation efficiency of poplar cuttings on a Ni-TCE co-contamination. Int J Phytoremediation 17(1):40–48

    Article  CAS  PubMed  Google Scholar 

  • Whipps J, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105(6):1744–1755

    Article  CAS  PubMed  Google Scholar 

  • Xiao WJ, Chen HQ, Wang H, Cai CH, Mei WL, Dai HF (2018) New secondary metabolites from the endophytic fungus Fusarium sp. HP-2 isolated from “Qi-Nan” agarwood. Fitoterapia 130:180–183

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Liang J, Li Q, Kong X, Chen R, Jin Y (2013) Cladosporium cladosporioides XJ-AC03, an aconitine-producing endophytic fungus isolated from Aconitum leucostomum. World J Microbiol Biotechnol:933–938. https://doi.org/10.1007/s11274-012-1246-4

  • Yasuhide M, Yamada T, Numata A, Tanaka R (2008) Chaetomugilins, new selectively cytotoxic metabolites, produced by a marine fishderived Chaetomium species. J Antibiot (Tokyo) 61(10):615–622. https://doi.org/10.1038/ja.2008.81

    Article  CAS  Google Scholar 

  • Yuan ZL, Chen YC, Yang Y (2009) Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid (Dendrobium nobile): estimation and characterization. World J Microbiol Biotechnol 25(2):295–303

    Article  Google Scholar 

  • Zaiyou J, Li M, Guifang X, Xiuren Z (2013) Isolation of an endophytic fungus producing baccatin III from Taxus wallichiana var. mairei. J Ind Microbiol Biotechnol 40(11):1297–1302. https://doi.org/10.1007/s10295-013-1320-4

    Article  CAS  PubMed  Google Scholar 

  • Zaiyou J, Li M, Xiqiao H (2017) An endophytic fungus efficiently producing paclitaxel isolated from Taxus wallichiana var. mairei. Medicine (Baltimore) 96(27):e7406. https://doi.org/10.1097/MD.0000000000007406

    Article  CAS  Google Scholar 

  • Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich NA, Mills DA, Martin G, Taghavi S, van der Lelie D (2015) The soil microbiome influences grapevine-associated microbiota. Mbio 6(2):e02527-e2514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeng YJ, Yang HR, Zong MH, Yang JG, Lou WY (2019) Novel antibacterial polysaccharides produced by endophyte Fusarium solani DO7. Bioresour Technol 288:121596. https://doi.org/10.1016/j.biortech.2019.121596

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu YX, Zhang N, Hu B, Jin T, Xu H, Qin Y, Yan P, Zhang X, Guo X, Hui J (2019) NRT1. 1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol 37(6):676–684

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wang JD, Liu CX, Yuan JH, Wang XJ, Xiang WS (2014) A new prenylated indole derivative from endophytic actinobacteria Streptomyces sp. neau-D50. Nat Prod Res 28(7):431–437

  • Zhang P, Zhou PP, Yu LJ (2009) An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr Microbiol 59(3):227–232

    Article  CAS  PubMed  Google Scholar 

  • Zhang FH, Xiang JH, Cui WX, Yu J, Wang Y, Li QF (2016) Isolation and identification of berberine from endophytic fungi HL-Y-3. China J Chin Materia Medica 41(16):2998–3001

    Google Scholar 

  • Zhang Z, In Y, Fukaya K, Yang T, Harunari E, Urabe D, Imada C, Oku N, Igarashi Y (2022) Kumemicinones A-G, cytotoxic angucyclinones from a deep sea-derived actinomycete of the genus Actinomadura. J Nat Prod 85(4):1098–108

    Article  CAS  PubMed  Google Scholar 

  • Zheng LP, Li XP, Zhou LL, Wang JW (2021) Endophytes in Artemisia annua L.: new potential regulators for plant growth and artemisinin biosynthesis. Plant Growth Regul 95:293–313. https://doi.org/10.1007/s10725-021-00751-3

  • Zhou J, Liu Z, Wang S, Li J, Li Y, Chen WK, Wang R (2020) Fungal endophytes promote the accumulation of Amaryllidaceae alkaloids in Lycoris radiata. Environ Microbiol 22(4):1421–34

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Wu Z, Tan D, Yang J, Zhou Q, Zeng F, Zhang M, Bie Q, Chen C, Xue Y, Luo Z (2017) Atrichodermones A-C, three new secondary metabolites from the solid culture of an endophytic fungal strain, Trichoderma atroviride. Fitoterapia 123:18–22

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the scientific community.

Author information

Authors and Affiliations

Authors

Contributions

VD: conceptualization, investigation, original draft and review and editing. SKR: data creation, software, formal analysis and review and editing. RK: investigation, formal analysis and review and editing. MJ: investigation, formal analysis and review and editing. GK: investigation and formal analysis. SJK: conceptualization, methodology, validation, project administration and review and editing.

Corresponding author

Correspondence to SukhminderJit Kaur.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Not applicable.

Consent for publication

All authors have read and approved the fnal version of the manuscript for publication.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwibedi, V., Rath, S.K., Joshi, M. et al. Microbial endophytes: application towards sustainable agriculture and food security. Appl Microbiol Biotechnol 106, 5359–5384 (2022). https://doi.org/10.1007/s00253-022-12078-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-022-12078-8

Keywords