Abstract
Antibiotic resistance poses a growing threat to global public health. It is urgent to develop new alternative antibiotics. Antimicrobial peptide (AMP) is a diverse class of natural-occurring molecules that constitute immune systems of living organisms. More than 2500 AMPs have been identified and isolated from natural sources. Compared to conventional antibiotics, AMPs exhibit antimicrobial activities against a broad spectrum of microorganisms including bacteria, fungi, and even viruses. More importantly, the unique antimicrobial mechanisms of AMPs make it difficult for microorganisms to develop resistance. Therefore, it is very promising to develop AMPs as high-value antimicrobial candidates. This mini review provides an update of recent progresses in recombinant production of AMPs after fusion of AMP with carrier proteins and their scale-up. Key factors including selection of expression host and fusion tags are firstly introduced, followed by subsequent discussions on purification of fusion proteins and recovery of antimicrobial peptides. The scale production of AMPs is also explored.
Similar content being viewed by others
References
Abou Aleinein R, Hamoud R, Schafer H, Wink M (2013) Molecular cloning and expression of ranalexin, a bioactive antimicrobial peptide from Rana catesbeiana in Escherichia coli and assessments of its biological activities. Appl Microbiol Biotechnol 97(8):3535–3543. https://doi.org/10.1007/s00253-012-4441-1
Arnau J, Lauritzen C, Petersen GE, Pedersen J (2006) Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr Purif 48(1):1–13. https://doi.org/10.1016/j.pep.2005.12.002
Azevedo AM, Rosa PAJ, Ferreira IF, Aires-Barros MR (2009) Chromatography-free recovery of biopharmaceuticals through aqueous two-phase processing. Trends Biotechnol 27(4):240–247. https://doi.org/10.1016/j.tibtech.2009.01.004
Bahar A, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6(12):1543. https://doi.org/10.3390/ph6121543, 1575
Bell MR, Engleka MJ, Malik A, Strickler JE (2013) To fuse or not to fuse: what is your purpose? Protein Sci 22(11):1466–1477. https://doi.org/10.1002/pro.2356
Bray BL (2003) Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat Rev Drug Discov 2:587–593. https://doi.org/10.1038/nrd1133
Cao J, de la Fuente-Nunez C, Ou RW, Torres MDT, Pande SG, Sinskey AJ, Lu TK (2018) Yeast-based synthetic biology platform for antimicrobial peptide production. ACS Synth Biol 7(3):896–902. https://doi.org/10.1021/acssynbio.7b00396
Casciaro B, Dutta D, Loffredo MR, Marcheggiani S, McDermott AM, Willcox MD, Mangoni ML (2018) Esculentin-1a derived peptides kill Pseudomonas aeruginosa biofilm on soft contact lenses and retain antibacterial activity upon immobilization to the lens surface. Biopolymers 110(5):e23074. https://doi.org/10.1002/bip.23074
Che YY, Lu YH, Zha XD, Huang HQ, Yang PL, Ma LJ, Xu XJ (2016) Higher efficiency soluble prokaryotic expression, purification, and structural analysis of antimicrobial peptide G13. Protein Expr Purif 119:45–50. https://doi.org/10.1016/j.pep.2015.11.006
Chen X, Zaro JL, Shen W-C (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65(10):1357–1369. https://doi.org/10.1016/j.addr.2012.09.039
Chen X, Shi JW, Chen R, Wen YA, Shi Y, Zhu Z, Guo SW, Li L (2015) Molecular chaperones (TrxA, SUMO, Intein, and GST) mediating expression, purification, and antimicrobial activity assays of plectasin in Escherichia coli. Biotechnol Appl Biochem 62(5):606–614. https://doi.org/10.1002/bab.1303
Chen X, Li J, Sun H, Li S, Chen T, Liu G, Dyson P (2017) High-level heterologous production and functional secretion by recombinant Pichia pastoris of the shortest proline-rich antibacterial honeybee peptide apidaecin. Sci Rep 7(1):14543. https://doi.org/10.1038/s41598-017-15149-3
Chopra L, Singh G, Choudhary V, Sahoo DK (2014) Sonorensin: an antimicrobial peptide, belonging to the heterocycloanthracin subfamily of bacteriocins, from a new marine isolate, Bacillus sonorensis MT93. Appl Environ Microbiol 80(10):2981–2990. https://doi.org/10.1128/aem.04259-13
Corsini L, Hothorn M, Scheffzek K, Sattler M, Stier G (2008) Thioredoxin as a fusion tag for carrier-driven crystallization. Protein Sci 17(12):2070–2079. https://doi.org/10.1110/ps.037564.108
Deng T, Ge H, He H, Liu Y, Zhai C, Feng L, Yi L (2017) The heterologous expression strategies of antimicrobial peptides in microbial systems. Protein Expr Purif 140:52–59. https://doi.org/10.1016/j.pep.2017.08.003
Dimitrijev Dwyer M, Brech M, Yu L, Middelberg APJ (2014) Intensified expression and purification of a recombinant biosurfactant protein. Chem Eng Sci 105:12–21. https://doi.org/10.1016/j.ces.2013.10.024
Dutta D, Kamphuis B, Ozcelik B, Thissen H, Pinarbasi R, Kumar N, Willcox MDP (2018) Development of silicone hydrogel antimicrobial contact lenses with Mel4 peptide coating. Optom Vis Sci 95(10):937–946. https://doi.org/10.1097/opx.0000000000001282
Eckert R (2011) Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiol 6(6):635–651. https://doi.org/10.2217/fmb.11.27
Enfors SO, Jahic M, Rozkov A, Xu B, Hecker M, Jürgen B, Krüger E, Schweder T, Hamer G, O'Beirne D, Noisommit-Rizzi N, Reuss M, Boone L, Hewitt C, McFarlane C, Nienow A, Kovacs T, Trägårdh C, Fuchs L, Revstedt J, Friberg PC, Hjertager B, Blomsten G, Skogman H, Hjort S, Hoeks F, Lin HY, Neubauer P, van der Lans R, Luyben K, Vrabel P, Manelius Å (2001) Physiological responses to mixing in large scale bioreactors. J Biotechnol 85(2):175–185. https://doi.org/10.1016/S0168-1656(00)00365-5
Feng XJ, Xu WS, Qu P, Li XC, Xing LW, Liu D, Jiao J, Wang J, Li ZQ, Liu CL (2015) High-yield recombinant expression of the chicken antimicrobial peptide fowlicidin-2 in Escherichia coli. Biotechnol Prog 31(2):369–374. https://doi.org/10.1002/btpr.2041
Ganz T (2003) The role of antimicrobial peptides in innate immunity. Integr Comp Biol 43(2):300–304. https://doi.org/10.1093/icb/43.2.300
Gaspar D, Veiga AS, Castanho MARB (2013) From antimicrobial to anticancer peptides. A review. Front Microbiol 4(294). https://doi.org/10.3389/fmicb.2013.00294
Gibbs GM, Davidson BE, Hillier AJ (2004) Novel expression system for large-scale production and purification of recombinant class IIa bacteriocins and its application to piscicolin 126. Appl Environ Microbiol 70(6):3292–3297. https://doi.org/10.1128/AEM.70.6.3292-3297.2004
Harder J, Bartels J, Christophers E, Schröder JM (1997) A peptide antibiotic from human skin. Nature 387:861. https://doi.org/10.1038/43088
Herbel V, Schafer H, Wink M (2015) Recombinant production of snakin-2 (an antimicrobial peptide from tomato) in E-coli and analysis of its bioactivity. Molecules 20(8):14889–14901. https://doi.org/10.3390/molecules200814889
Hou HH, Yan WL, Du KX, Ye YJ, Cao QQ, Ren WH (2013) Construction and expression of an antimicrobial peptide scolopin 1 from the centipede venoms of Scolopendra subspinipes mutilans in Escherichia coli using SUMO fusion partner. Protein Expr Purif 92(2):230–234. https://doi.org/10.1016/j.pep.2013.10.004
Huang C-J, Lin H, Yang X (2012) Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements. J Ind Microbiol Biotechnol 39(3):383–399. https://doi.org/10.1007/s10295-011-1082-9
Hunt I (2005) From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expr Purif 40(1):1–22. https://doi.org/10.1016/j.pep.2004.10.018
Ji S, Li W, Baloch AR, Wang M, Li H, Cao B, Zhang H (2017) Efficient biosynthesis of a cecropin A-melittin mutant in Bacillus subtilis WB700. Sci Rep 7:40587. https://doi.org/10.1038/srep40587
Klint JK, Senff S, Saez NJ, Seshadri R, Lau HY, Bende NS, Undheim EAB, Rash LD, Mobli M, King GF (2013) Production of recombinant disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli. PLoS One 8(5):e63865. https://doi.org/10.1371/journal.pone.0063865
Latham PW (1999) Therapeutic peptides revisited. Nat Biotechnol 17:755–757. https://doi.org/10.1038/11686
Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14(3):98–105. https://doi.org/10.1016/0167-7799(96)80930-9
Li Y (2010) Carrier proteins for fusion expression of antimicrobial peptides in Escherichia coli. Biotechnol Appl Biochem 54(1):1–9. https://doi.org/10.1042/BA20090087
Li Y (2011) Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr Purif 80(2):260–267. https://doi.org/10.1016/j.pep.2011.08.001
Li YF (2013a) Production of human antimicrobial peptide LL-37 in Escherichia coli using a thioredoxin-SUMO dual fusion system. Protein Expr Purif 87(2):72–78. https://doi.org/10.1016/j.pep.2012.10.008
Li YF (2013b) Recombinant production of crab antimicrobial protein scygonadin expressed as thioredoxin and SUMO fusions in Escherichia coli. Appl Biochem Biotechnol 169(6):1847–1857. https://doi.org/10.1007/s12010-013-0102-9
Li X, Leong SSJ (2011) A chromatography-focused bioprocess that eliminates soluble aggregation for bioactive production of a new antimicrobial peptide candidate. J Chromatogr A 1218(23):3654–3659. https://doi.org/10.1016/j.chroma.2011.04.017
Li P, Li X, Saravanan R, Li CM, Leong SSJ (2012) Antimicrobial macromolecules: synthesis methods and future applications. RSC Adv 2(10):4031–4044. https://doi.org/10.1039/C2RA01297A
Li Y, Wang J, Yang J, Wan C, Wang X, Sun H (2014) Recombinant expression, purification and characterization of antimicrobial peptide ORBK in Escherichia coli. Protein Expr Purif 95:182–187. https://doi.org/10.1016/j.pep.2013.12.011
Lin CH, Pan YC, Liu FW, Chen CY (2017) Prokaryotic expression and action mechanism of antimicrobial LsGRP1C recombinant protein containing a fusion partner of small ubiquitin-like modifier. Appl Microbiol Biotechnol 101(22):8129–8138. https://doi.org/10.1007/s00253-017-8530-z
Luan C, Zhang HW, Song DG, Xie YG, Feng J, Wang YZ (2014) Expressing antimicrobial peptide cathelicidin-BF in Bacillus subtilis using SUMO technology. Appl Microbiol Biotechnol 98(8):3651–3658. https://doi.org/10.1007/s00253-013-5246-6
Mai S, Mauger MT, Niu L-N, Barnes JB, Kao S, Bergeron BE, Ling J-Q, Tay FR (2017) Potential applications of antimicrobial peptides and their mimics in combating caries and pulpal infections. Acta Biomater 49:16–35. https://doi.org/10.1016/j.actbio.2016.11.026
Mangoni ML, McDermott AM, Zasloff M (2016) Antimicrobial peptides and wound healing: biological and therapeutic considerations. Exp Dermatol 25(3):167–173. https://doi.org/10.1111/exd.12929
Meng D-M, Dai H-X, Gao X-F, Zhao J-F, Guo Y-J, Ling X, Dong B, Zhang Z-Q, Fan Z-C (2016a) Expression, purification and initial characterization of a novel recombinant antimicrobial peptide Mytichitin-A in Pichia pastoris. Protein Expr Purif 127:35–43. https://doi.org/10.1016/j.pep.2016.07.001
Meng FQ, Zhao HZ, Zhang C, Lu FX, Bie XM, Lu ZX (2016b) Expression of a novel bacteriocin-the plantaricin Pln1-in Escherichia coli and its functional analysis. Protein Expr Purif 119:85–93. https://doi.org/10.1016/j.pep.2015.11.008
Meng D-M, Zhao J-F, Ling X, Dai H-X, Guo Y-J, Gao X-F, Dong B, Zhang Z-Q, Meng X, Fan Z-C (2017) Recombinant expression, purification and antimicrobial activity of a novel antimicrobial peptide PaDef in Pichia pastoris. Protein Expr Purif 130:90–99. https://doi.org/10.1016/j.pep.2016.10.003
Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85(14):2149–2154. https://doi.org/10.1021/ja00897a025
Middelberg APJ (2012) Releasing biopharmaceutical products from cells. In: Subramanian G (ed) Biopharmaceutical production technology, vol 1. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Mishra B, Reiling S, Zarena D, Wang G (2017) Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr Opin Chem Biol 38:87–96. https://doi.org/10.1016/j.cbpa.2017.03.014
Müller H, Salzig D, Czermak P (2015) Considerations for the process development of insect-derived antimicrobial peptide production. Biotechnol Prog 31(1):1–11. https://doi.org/10.1002/btpr.2002
Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29(9):464–472. https://doi.org/10.1016/j.tibtech.2011.05.001
Nordström R, Malmsten M (2017) Delivery systems for antimicrobial peptides. Adv Colloid Interf Sci 242:17–34. https://doi.org/10.1016/j.cis.2017.01.005
Onaizi SA, Leong SSJ (2011) Tethering antimicrobial peptides: current status and potential challenges. Biotechnol Adv 29(1):67–74. https://doi.org/10.1016/j.biotechadv.2010.08.012
Pal G, Srivastava S (2015) Scaling up the production of recombinant antimicrobial plantaricin E from a heterologous host, Escherichia coli. Probiotics Antimicrob Proteins 7(3):216–221. https://doi.org/10.1007/s12602-015-9193-7
Panteleev PV, Ovchinnikova TV (2017) Improved strategy for recombinant production and purification of antimicrobial peptide tachyplesin I and its analogs with high cell selectivity. Biotechnol Appl Biochem 64(1):35–42. https://doi.org/10.1002/bab.1456
Pina AS, Lowe CR, Roque ACA (2014) Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnol Adv 32(2):366–381. https://doi.org/10.1016/j.biotechadv.2013.12.001
Qu H, Chen B, Peng H, Wang K (2013) Molecular cloning, recombinant expression, and antimicrobial activity of EC-hepcidin3, a new four-cysteine hepcidin isoform from Epinephelus coioides. Biosci Biotechnol Biochem 77(1):103–110. https://doi.org/10.1271/bbb.120600
Rezaei Javan R, van Tonder AJ, King JP, Harrold CL, Brueggemann AB (2018) Genome sequencing reveals a large and diverse repertoire of antimicrobial peptides. Front Microbiol 9(2012). https://doi.org/10.3389/fmicb.2018.02012
Richard C, Drider D, Elmorjani K, Marion D, Prévost H (2004) Heterologous expression and purification of active divercin V41, a class IIa bacteriocin encoded by a synthetic gene in Escherichia coli. J Bacteriol 186(13):4276–4284. https://doi.org/10.1128/JB.186.13.4276-4284.2004
Schaller A, Connors NK, Dwyer MD, Oelmeier SA, Hubbuch J, Middelberg APJ (2015) Computational study of elements of stability of a four-helix bundle protein biosurfactant. J Comput Aided Mol Des 29(1):47–58. https://doi.org/10.1007/s10822-014-9803-6
Schmidt FR (2005) Optimization and scale up of industrial fermentation processes. Appl Microbiol Biotechnol 68(4):425–435. https://doi.org/10.1007/s00253-005-0003-0
Schreiber C, Müller H, Birrenbach O, Klein M, Heerd D, Weidner T, Salzig D, Czermak P (2017) A high-throughput expression screening platform to optimize the production of antimicrobial peptides. Microb Cell Factories 16(1):29. https://doi.org/10.1186/s12934-017-0637-5
Song D, Chen Y, Li X, Zhu M, Gu Q (2014) Heterologous expression and purification of dermaseptin S4 fusion in Escherichia coli and recovery of biological activity. Prep Biochem Biotechnol 44(6):598–607. https://doi.org/10.1080/10826068.2013.835735
Sørensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115(2):113–128. https://doi.org/10.1016/j.jbiotec.2004.08.004
Sousa DA, Mulder KCL, Nobre KS, Parachin NS, Franco OL (2016) Production of a polar fish antimicrobial peptide in Escherichia coli using an ELP-intein tag. J Biotechnol 234:83–89. https://doi.org/10.1016/j.jbiotec.2016.07.021
Sun Y, Li Q, Li Z, Zhang Y, Zhao J, Wang L (2012) Molecular cloning, expression, purification, and functional characterization of palustrin-2CE, an antimicrobial peptide of Rana chensinensis. Biosci Biotechnol Biochem 76(1):157–162. https://doi.org/10.1271/bbb.110672
Sun B, Wibowo D, Middelberg APJ, Zhao C-X (2018a) Cost-effective downstream processing of recombinantly produced pexiganan peptide and its antimicrobial activity. AMB Express 8(1):6. https://doi.org/10.1186/s13568-018-0541-3
Sun B, Wibowo D, Sainsbury F, Zhao C-X (2018b) Design and production of a novel antimicrobial fusion protein in Escherichia coli. Appl Microbiol Biotechnol 102(20):8763–8772. https://doi.org/10.1007/s00253-018-9319-4
Tao Y, Zhao DM, Wen Y (2014) Expression, purification and antibacterial activity of the channel catfish hepcidin mature peptide. Protein Expr Purif 94:73–78. https://doi.org/10.1016/j.pep.2013.11.001
Tareq FS, Kim JH, Lee MA, Lee H-S, Lee J-S, Lee Y-J, Shin HJ (2013) Antimicrobial gageomacrolactins characterized from the fermentation of the marine-derived bacterium Bacillus subtilis under optimum growth conditions. J Agric Food Chem 61(14):3428–3434. https://doi.org/10.1021/jf4009229
Tay DKS, Rajagopalan G, Li X, Chen Y, Lua LHL, Leong SSJ (2010) A new bioproduction route for a novel antimicrobial peptide. Biotechnol Bioeng 108(3):572–581. https://doi.org/10.1002/bit.22970
Toennies G, Homiller RP (1942) The oxidation of amino acids by hydrogen peroxide in formic acid. J Am Chem Soc 64(12):3054–3056. https://doi.org/10.1021/ja01264a518
Travkova OG, Moehwald H, Brezesinski G (2017) The interaction of antimicrobial peptides with membranes. Adv Colloid Interf Sci 247:521–532. https://doi.org/10.1016/j.cis.2017.06.001
Urry DW, Trapane TL, Prasad KU (1985) Phase-structure transitions of the elastin polypentapeptide–water system within the framework of composition–temperature studies. Biopolymers 24(12):2345–2356. https://doi.org/10.1002/bip.360241212
Ventola CL (2015) The antibiotic resistance crisis: part 1: causes and threats. P & T 40(4):277–283
Vu TTT, Jeong B, Yu J, Koo B-K, Jo S-H, Robinson RC, Choe H (2014) Soluble prokaryotic expression and purification of crotamine using an N-terminal maltose-binding protein tag. Toxicon 92:157–165. https://doi.org/10.1016/j.toxicon.2014.10.017
Wang XJ, Wang XM, Teng D, Zhang Y, Mao RY, Wang JH (2014) Recombinant production of the antimicrobial peptide NZ17074 in Pichia pastoris using SUMO3 as a fusion partner. Lett Appl Microbiol 59(1):71–78. https://doi.org/10.1111/lam.12246
Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 44(D1):D1087–D1093. https://doi.org/10.1093/nar/gkv1278
Wei XB, Wu RJ, Zhang LL, Ahmad B, Si DY, Zhang RJ (2018) Expression, purification, and characterization of a novel hybrid peptide with potent antibacterial activity. Molecules 23(6). https://doi.org/10.3390/molecules23061491
Weuster-Botz D (2000) Experimental design for fermentation media development: statistical design or global random search? J Biosci Bioeng 90(5):473–483. https://doi.org/10.1016/S1389-1723(01)80027-X
Wibowo D, Zhao C-X, Middelberg APJ (2015) Interfacial biomimetic synthesis of silica nanocapsules using a recombinant catalytic modular protein. Langmuir 31(6):1999–2007. https://doi.org/10.1021/la504684g
Wibowo D, Yang G-Z, Middelberg APJ, Zhao C-X (2017) Non-chromatographic bioprocess engineering of a recombinant mineralizing protein for the synthesis of silica nanocapsules. Biotechnol Bioeng 114(2):335–343. https://doi.org/10.1002/bit.26079
Winkler DFH, Tian K (2015) Investigation of the automated solid-phase synthesis of a 38mer peptide with difficult sequence pattern under different synthesis strategies. Amino Acids 47(4):787–794. https://doi.org/10.1007/s00726-014-1909-6
Wood DW, Wu W, Belfort G, Derbyshire V, Belfort M (1999) A genetic system yields self-cleaving inteins for bioseparations. Nat Biotechnol 17:889–892. https://doi.org/10.1038/12879
Xie YG, Luan C, Zhang HW, Han FF, Feng J, Choi YJ, Groleau D, Wang YZ (2013) Effects of thioredoxin: SUMO and intein on soluble fusion expression of an antimicrobial peptide OG2 in Escherichia coli. Protein Pept Lett 20(1):54–60. https://doi.org/10.2174/092986613804096775
Yadav DK, Yadav N, Yadav S, Haque S, Tuteja N (2016) An insight into fusion technology aiding efficient recombinant protein production for functional proteomics. Arch Biochem Biophys 612:57–77. https://doi.org/10.1016/j.abb.2016.10.012
Yee L, Blanch HW (1993) Defined media optimization for growth of recombinant Escherichia coli X90. 41(2):221–230. https://doi.org/10.1002/bit.260410208
Yi TH, Sun SY, Huang YB, Chen YX (2015) Prokaryotic expression and mechanism of action of alpha-helical antimicrobial peptide A20L using fusion tags. BMC Biotechnol 15:69. https://doi.org/10.1186/s12896-015-0189-x
Young CL, Britton ZT, Robinson AS (2012) Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J 7(5):620–634. https://doi.org/10.1002/biot.201100155
Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395. https://doi.org/10.1038/415389a
Zhang C, He XL, Gu YP, Zhou HY, Cao J, Gao Q (2014) Recombinant scorpine produced using SUMO fusion partner in Escherichia coli has the activities against clinically isolated bacteria and inhibits the Plasmodium falciparum parasitemia in vitro. PLoS One 9(7):e103456. https://doi.org/10.1371/journal.pone.0103456
Zhang LC, Li XD, Wei DD, Wang J, Shan AS, Li ZY (2015a) Expression of plectasin in Bacillus subtilis using SUMO technology by a maltose-inducible vector. J Ind Microbiol Biotechnol 42(10):1369–1376. https://doi.org/10.1007/s10295-015-1673-y
Zhang Y, Teng D, Wang X, Mao R, Cao X, Hu X, Zong L, Wang J (2015b) In vitro and in vivo characterization of a new recombinant antimicrobial peptide, MP1102, against methicillin-resistant Staphylococcus aureus. Appl Microbiol Biotechnol 99(15):6255–6266. https://doi.org/10.1007/s00253-015-6394-7
Zhao C-X, Dwyer MD, Yu AL, Wu Y, Fang S, Middelberg APJ (2015) A simple and low-cost platform technology for producing pexiganan antimicrobial peptide in E. coli. Biotechnol Bioeng 112(5):957–964. https://doi.org/10.1002/bit.25505
Zydney AL (2016) Continuous downstream processing for high value biological products: a review. Biotechnol Bioeng 113(3):465–475. https://doi.org/10.1002/bit.25695
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interests
The authors declare that they have no financial or commercial conflict of interest.
Ethical statement
This article does not contain any studies with human participants or animals performed by any of the authors.
Rights and permissions
About this article
Cite this article
Wibowo, D., Zhao, CX. Recent achievements and perspectives for large-scale recombinant production of antimicrobial peptides. Appl Microbiol Biotechnol 103, 659–671 (2019). https://doi.org/10.1007/s00253-018-9524-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-018-9524-1