[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Ecofriendly control of potato late blight causative agent and the potential role of lactic acid bacteria: a review

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In times of increasing societal pressure to reduce the application of pesticides on crops, demands for environmentally friendly replacements have intensified. In the case of late blight, a devastating potato plant disease, the historically most widely known plant destroyer has been the oomycete Phytophthora infestans. To date, the most important strategy for control of this pathogen has been the frequent application of fungicides. Due to the aforementioned necessity to move away from traditional chemical treatments, many studies have focused on finding alternative ecofriendly biocontrol systems. In general, due to the different modes of actions (i.e. antagonistic effects or induction of plant defence mechanisms), the use of microorganisms as biological control agents has a definite potential. Amongst them, several species of lactic acid bacteria have been recognised as producers of bioactive metabolites which are functional against a broad spectrum of undesirable microorganisms, such as fungi, oomycetes and other bacteria. Thus, they may represent an interesting tool for the development of novel concepts in pest management. This review describes the present situation of late blight disease and summarises current literature regarding the biocontrol of the phytopathogen P. infestans using antagonistic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • EEC (2005) Regulation of the European Parliament and of the Council on maximum residue levels of pesticides in or on food and feed of plant and animal origin. (EC) No 396/2005, EU Council Regulation, Brussels, Belgium

  • EEC (2006) Regulation on organic production of agricultural products and indications referring thereto on agricultural products and foodstuffs. EU Council Regulation, Brussels, Belgium

  • Abad ZG, Abad JA (1997) Another look at the origin of late blight of potatoes, tomatoes, and pear melon in the Andes of South America. Plant Dis 81(6):682–688

    Article  Google Scholar 

  • Ajay S, Sunaina V (2005) Direct inhibition of Phytophthora infestans, the causal organism of late blight of potato by Bacillus antagonists. Potato J 32(3–4):179–180

    Google Scholar 

  • Avis TJ, Belanger RR (2001) Specificity and mode of action of the antifungal fatty acid cis-9-heptadecenoic acid produced by Pseudozyma flocculosa. Appl Environ Microbiol 67(2):956–960. doi:10.1128/aem.67.2.956-960.2001

    Article  CAS  Google Scholar 

  • Batish VK, Roy U, Lal R, Grover S (1997) Antifungal attributes of lactic acid bacteria—a review. CR Rev Biotechn 17(3):209–225. doi:10.3109/07388559709146614

    Article  CAS  Google Scholar 

  • Becktell MC, Daughtrey ML, Fry WE (2005) Epidemiology and management of petunia and tomato late blight in the greenhouse. Plant Dis 89(9):1000–1008. doi:10.1094/pd-89-1000

    Article  Google Scholar 

  • Benhamou N, Rey P, Picard K, Tirilly Y (1999) Ultrastructural and cytochemical aspects of the interaction between the mycoparasite Pythium oligandrum and soilborne plant pathogens. Phytopathology 89(6):506–517. doi:10.1094/phyto.1999.89.6.506

    Article  CAS  Google Scholar 

  • Benitez T, Rincon AM, Limon MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7(4):249–260

    CAS  Google Scholar 

  • Broberg A, Jacobsson K, Strom K, Schnurer J (2007) Metabolite profiles of lactic acid bacteria in grass silage. Appl Environ Microbiol 73(17):5547–5552. doi:10.1128/aem.02939-06

    Article  CAS  Google Scholar 

  • Carabet AF, Grozea I, Chirita R, Badea AM (2008) Biological control of late blight (Phytophthora infestans (Mont.) de Bary) in tomatoes with mycoextracts from Fusarium culmorum and Fusarium graminearum. Comm Agr Appl Biol Sci 73(2):257–262

    CAS  Google Scholar 

  • Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Cr Rev Microbiol 28(4):281–370. doi:10.1080/1040-840291046759

    Article  CAS  Google Scholar 

  • Cooke LR, Schepers H, Hermansen A, Bain RA, Bradshaw NJ, Ritchie F, Shaw DS, Evenhuis A, Kessel GJT, Wander JGN, Andersson B, Hansen JG, Hannukkala A, Naerstad R, Nielsen BJ (2011) Epidemiology and integrated control of potato late blight in Europe. Potato Res 54(2):183–222. doi:10.1007/s11540-011-9187-0

    Article  Google Scholar 

  • Corsetti A, Gobbetti M, Rossi J, Damiani P (1998) Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Appl Microbiol Biotechnol 50(2):253–256

    Article  CAS  Google Scholar 

  • Crosier W (1934) Studies in the biology of Phytophthora infestans (Mont.) de Bary. Cornell University Agricultural Experiment Station Memoir 155(40)

  • Daayf F, Adam L, Fernando WGD (2003) Comparative screening of bacteria for biological control of potato late blight (strain US-8), using in-vitro, detached-leaves, and whole-plant testing systems. Calif J Plant Pathol 25(3):276–284

    Article  Google Scholar 

  • Dal Bello F, Clarke CI, Ryan LAM, Ulmer H, Schober TJ, Strom K, Sjogren J, van Sinderen D, Schnurer J, Arendt EK (2007) Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J Cereal Sci 45(3):309–318. doi:10.1016/j.jcs.2006.09.004

    Article  CAS  Google Scholar 

  • Dalie DKD, Deschamps AM, Richard-Forget F (2010) Lactic acid bacteria—potential for control of mould growth and mycotoxins: a review. Food Control 21(4):370–380. doi:10.1016/j.foodcont.2009.07.011

    Article  CAS  Google Scholar 

  • Daly MJ, Stewart DPC (1999) Influence of “effective microorganisms” (EM) on vegetable production and carbon mineralization—a preliminary investigation. J Sustain Agr 14(2–3):15–25. doi:10.1300/J064v14n02_04

    Article  Google Scholar 

  • De Muynck C, Leroy AIJ, De Maeseneire S, Arnaut F, Soetaert W, Vandamme EJ (2004) Potential of selected lactic acid bacteria to produce food compatible antifungal metabolites. Microbiol Res 159(4):339–346. doi:10.1016/j.micres.2004.07.002

    Article  Google Scholar 

  • de Souza JT, de Boer M, de Waard P, van Beek TA, Raaijmakers JM (2003) Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. App Environ Microbiol 69(12):7161–7172. doi:10.1128/aem.69.12.7161-7172.2003

    Article  Google Scholar 

  • Dorn B, Musa T, Krebs H, Fried PM, Forrer HR (2007) Control of late blight in organic potato production: evaluation of copper-free preparations under field, growth chamber and laboratory conditions. Eur J Plant Pathol 119(2):217–240. doi:10.1007/s10658-007-9166-0

    Article  Google Scholar 

  • Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. BioControl 46(4):387–400. doi:10.1023/a:1014193329979

    Article  Google Scholar 

  • EPA (2004) US Environmental Protection Agency Office of Pesticide Programs, Biopesticides and Pollution Prevention Division “Biopesticides registration action document Bacillus pumilus strain QST 2808”. (PC Code 006485)

  • Falguni P, Shilpa V, Mann B (2010) Production of proteinaceous antifungal substances from Lactobacillus brevis NCDC 02. Int J Dairy Technol 63(1):70–76. doi:10.1111/j.1471-0307.2009.00553.x

    Article  CAS  Google Scholar 

  • FAO (2012) FAOSTAT Crops Production. PUblisher. http://faostat3.fao.org/home/index.html#DOWNLOAD. Accessed 21 June 2012

  • Fernandez-Pavia SP, Grunwald NJ, Diaz-Valasis M, Cadena-Hinojosa M, Fry WE (2004) Soilborne oospores of Phytophthora infestans in central Mexico survive winter fallow and infect potato plants in the field. Plant Dis 88(1):29–33. doi:10.1094/pdis.2004.88.1.29

    Article  Google Scholar 

  • Flemming CA, Trevors JT (1989) Copper toxicity and chemistry in the environment—a review. Water Air Soil Pollut 44(1–2):143–158. doi:10.1007/bf00228784

    Article  CAS  Google Scholar 

  • Foley MF, Deacon JW (1986) Susceptibility of Pythium spp. and other fungi to antagonism by the mycoparasite Pythium oligandrum. Soil Biol Biochem 18(1):91–95. doi:10.1016/0038-0717(86)90108-2

    Article  Google Scholar 

  • Fry WE (1998) Late blight of potatoes and tomatoes. Integrated Pest Management Cornell University (Fact Sheet 726.20 Vegetable Crops)

  • Fry WE (2008) Phytophthora infestans: the plant (and R gene) destroyer. Mol Plant Pathol 9(3):385–402. doi:10.1111/j.1364-3703.2007.00465.x

    Article  Google Scholar 

  • Fry WE, Goodwin SB (1997) Resurgence of the Irish potato famine fungus. Bioscience 47(6):363–371. doi:10.2307/1313151

    Article  Google Scholar 

  • Gallou A, Mosquera HPL, Cranenbrouck S, Suarez JP, Declerck S (2011) Mycorrhiza induced resistance in potato plantlets challenged by Phytophthora infestans. Physiol Mol Plant P 76(1):20–26. doi:10.1016/j.pmpp. 2011.06.005

    Article  CAS  Google Scholar 

  • Garita V, Bustamante E, Shattock R (1998) Selección de antagonistas para el control biológico de Phytophthora infestans en tomate. Manejo Integrado de Plagas (Costa Rica) (48):25-34

  • Ghorbani R, Wilcockson SJ, Giotis C, Leifert C (2004) Potato late blight management in organic agriculture. Outlooks Pest Manag 15(4):176–180

    Article  Google Scholar 

  • Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Kohl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30(5):250–258. doi:10.1016/j.tibtech.2012.01.003

    Article  CAS  Google Scholar 

  • Grunwald NJ, Sturbaum AK, Montes GR, Serrano EG, Lozoya-Saldana H, Fry WE (2006) Selection for fungicide resistance within a growing season in field populations of Phytophthora infestans at the center of origin. Phytopathology 96(12):1397–1403. doi:10.1094/phyto-96-1397

    Article  CAS  Google Scholar 

  • Guo J, Mauch A, Galle S, Murphy P, Arendt EK, Coffey A (2011) Inhibition of growth of Trichophyton tonsurans by Lactobacillus reuteri. J Appl Microbiol 111(2):474–483. doi:10.1111/j.1365-2672.2011.05032.x

    Article  CAS  Google Scholar 

  • Guo J, Brosnan B, Furey A, Arendt EK, Murphy P, Coffey A (2012) Antifungal activity of Lactobacillus against Microsporum canis, Microsporum gypseum and Epidermophyton floccosum. Bioengineered bugs 3(2):104–113

    Article  Google Scholar 

  • Haverkort A, Struik P, Visser R, Jacobsen E (2009) Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Res 52(3):249–264. doi:10.1007/s11540-009-9136-3

    Article  Google Scholar 

  • Hidaka H, Nagatsu T, Takeya K, Takeuchi T, Suda H, Kojiri K, Matsuzak M, Umezawa H (1969) Fusaric acid a hipotensive agent produced by fungi. J Antibiotics 22(5):228

    Article  CAS  Google Scholar 

  • Hiddink GA, van Bruggen AHC, Termorshuizen AJ, Raaijmakers JM, Semenov AV (2005) Effect of organic management of soils on suppressiveness to Gaeumannomyces graminis var. tritici and its antagonist, Pseudomonas fluorescens. Eur J Plant Pathol 113(4):417–435. doi:10.1007/s10658-005-5402-7

    Article  Google Scholar 

  • Higa T (1994) Effective microorganisms—a new dimension for nature farming. In: Parr JR, Hornic SB, Whitman CE (ed) Proceedings of the 2nd international nature farming conference USDA, Washington, DC, pp 20–23

  • Higa T, Parr JF (1994) Beneficial and effective microorganisms for a sustainable agriculture and environment. Publisher. http://www.agriton.nl/higa.html

  • Hultberg M, Alsberg T, Khalil S, Alsanius B (2010a) Suppression of disease in tomato infected by Pythium ultimum with a biosurfactant produced by Pseudomonas koreensis. BioControl 55(3):435–444. doi:10.1007/s10526-009-9261-6

    Article  CAS  Google Scholar 

  • Hultberg M, Bengtsson T, Liljeroth E (2010b) Late blight on potato is suppressed by the biosurfactant-producing strain Pseudomonas koreensis 2.74 and its biosurfactant. BioControl 55(4):543–550. doi:10.1007/s10526-010-9289-7

    Article  CAS  Google Scholar 

  • Jindal KK, Singh H, Meeta M (1988) Biological control of Phytophthora infestans on potato. Indian J Plant Pathol 6(1):59–62

    Google Scholar 

  • Judelson HS (1997) The genetics and biology of Phytophthora infestans: modern approaches to a historical challenge. Fungal Genet Biol 22(2):65–76. doi:10.1006/fgbi.1997.1006

    Article  CAS  Google Scholar 

  • Judelson HS, Blanco FA (2005) The spores of Phytophthora: weapons of the plant destroyer. Nat Rev Microbiol 3(1):47–58. doi:10.1038/nrmicro1064

    Article  CAS  Google Scholar 

  • Kim HJ, Jeun YC (2006) Resistance induction and enhanced tuber production by pre-inoculation with bacterial strains in potato plants against Phytophthora infestans. Mycobiology 34(2):67–72

    Article  CAS  Google Scholar 

  • Kim JC, Choi GJ, Park JH, Kim HT, Cho KY (2001) Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest Manag Sci 57(6):554–559. doi:10.1002/ps.318

    Article  CAS  Google Scholar 

  • Kim HY, Choi GJ, Lee HB, Lee SW, Lim HK, Jang KS, Son SW, Lee SO, Cho KY, Sung ND, Kim JC (2007) Some fungal endophytes from vegetable crops and their anti-oomycete activities against tomato late blight. Lett Appl Microbiol 44(3):332–337. doi:10.1111/j.1472-765X.2006.02093.x

    Article  Google Scholar 

  • Kitagawa A, Sugihara Y, Okumura M, Kawai K, Hamasaki T (1997) Reexamination of respiration-impairing effect of bikaverin on isolated mitochondria. Cereal Res Comm 25(3):451–452

    CAS  Google Scholar 

  • Kurzawinska H, Mazur S (2009) The evaluation of Pythium oligandrum and chitosan in control of Phytophthora infestans (Mont.) de Bary on potato plants. Folia Horticult 21(2):13–23

    Google Scholar 

  • Lavermicocca P, Valerio F, Evidente A, Lazzaroni S, Corsetti A, Gobbetti M (2000) Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl Environ Microbol 66(9):4084–4090. doi:10.1128/aem.66.9.4084-4090.2000

    Article  CAS  Google Scholar 

  • Lee HB, Kim Y, Kim JC, Choi GJ, Park SH, Kim CJ, Jung HS (2005) Activity of some aminoglycoside antibiotics against true fungi, Phytophthora and Pythium species. J Appl Microbiol 99(4):836–843. doi:10.1111/j.1365-2672.2005.02684.x

    Article  CAS  Google Scholar 

  • Lehr P (2010) Biopesticides: the global market. Report code CHM029B BCC Research

  • Leifert C, Wilcockson SJ (2005) Final report (December 2005) of the Blight-MOP project QLK5-CT-2000-01065, Blight-MOP: development of a systems approach for the management of late blight (caused by Phytophthora infestans) in EU organic potato production. http://orgprintsorg/10650/

  • Li JX, Chen GH, Webster JM, Czyzewska E (1995) Antimicrobial metabolites from a bacterial symbiont. J Nat Products 58(7):1081–1086. doi:10.1021/np50121a016

    Article  CAS  Google Scholar 

  • Lourenco V, Maffia LA, Romeiro RD, Mizubuti ESG (2006) Biocontrol of tomato late blight with the combination of epiphytic antagonists and rhizobacteria. Biol Control 38(3):331–340. doi:10.1016/j.biocontrol.2006.04.005

    Article  Google Scholar 

  • Lozoya-Saldana H, Coyote-Palma MH, Ferrera-Cerrato R, Lara-Hernandez ME (2006) Microbial antagonism against Phytophthora infestans (Mont) de Bary. Agrociencia 40(4):491–499

    Google Scholar 

  • Lukezic FL, Leath KT, Jones M, Levine RG (1990) Efficiency and potential use in crop protection of the naturally occurring resident antagonists on the phylloplane. Symp Mol Cell Biol. UCLA (University of California Los Angeles) Symposia on Molecular and Cellular Biology New Series, 12:793–812

  • Magnusson J, Strom K, Roos S, Sjogren J, Schnurer J (2003) Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol Lett 219(1):129–135. doi:10.1016/s0378-1097(02)01207-7

    Article  CAS  Google Scholar 

  • Maleki M, Mokhtarnejad L, Mostafaee S (2011) Screening of rhizobacteria for biological control of cucumber root and crown rot caused by Phytophthora drechsleri. Plant Pathology J 27(1):78–84. doi:10.5423/ppj.2011.27.1.078

    Article  Google Scholar 

  • Mandal V, Sen SK, Mandal NC (2007) Detection, isolation and partial characterization of antifungal compound(s) produced by Pediococcus acidilactici LAB 5. Nat Prod Commun 2(6):671–674

    CAS  Google Scholar 

  • Marrone P (2002) An effective biofungicide with novel modes of action. Pestic Outlook 13(5):193–194

    Article  CAS  Google Scholar 

  • Mauch A, Dal Bello F, Coffey A, Arendt EK (2010) The use of Lactobacillus brevis PS1 to in vitro inhibit the outgrowth of Fusarium culmorum and other common Fusarium species found on barley. Int J Food Microbiol 141(1–2):116–121. doi:10.1016/j.ijfoodmicro.2010.05.002

    Article  CAS  Google Scholar 

  • Mitani S, Araki S, Yamaguchi T, Takii Y, Ohshima T, Matsuo N (2002) Biological properties of the novel fungicide cyazofamid against Phytophthora infestans on tomato and Pseudoperonospora cubensis on cucumber. Pest Manag Sci 58(2):139–145. doi:10.1021/ps.430

    Article  CAS  Google Scholar 

  • Mizubuti ESG, Lourenço Júnior V, Forbes GA (2007) Management of late blight with alternative products Publisher. http://www.globalsciencebooks.info/JournalsSup/images/0712/PT_1(2)106-116o.pdf Accessed 14 November 2011

  • Moeller K, Dilger M, Habermeyer J, Zinkernagel V, Flier WG, Hausladen H (2009) Population studies on Phytophthora infestans on potatoes and tomatoes in southern Germany. Eur J Plant Pathol 124(4):659–672. doi:10.1007/s10658-009-9451-1

    Article  Google Scholar 

  • Muhialdin BJ, Hassan Z, Sadon SK (2011) Antifungal activity of Lactobacillus fermentum Te007, Pediococcus pentosaceus Te010, Lactobacillus pentosus G004, and L. paracasi D5 on selected foods. J Food Sci 76(7):M493–M499. doi:10.1111/j.1750-3841.2011.02292.x

    Article  CAS  Google Scholar 

  • Ndagano D, Lamoureux T, Dortu C, Vandermoten S, Thonart P (2011) Antifungal activity of 2 lactic acid bacteria of the Weissella genus isolated from food. J Food Sci 76(6):M305–M311. doi:10.1111/j.1750-3841.2011.02257.x

    Article  CAS  Google Scholar 

  • No 95/2/EC (1995) European Parliament and Council Directive No 95/2/EC of 20 February 1995 on food additives other than colours and sweeteners (OJ L 61, 18.3.1995, p. 1), last amended by Commission Directive 2010/69/EU of 22 October 2010 (OJ L 279, 23.10.2010, p. 22) No 95/2/EC

  • Okkers DJ, Dicks LMT, Silvester M, Joubert JJ, Odendaal HJ (1999) Characterization of pentocin TV35b, a bacteriocin-like peptide isolated from Lactobacillus pentosus with a fungistatic effect on Candida albicans. J App Microbiol 87(5):726–734. doi:10.1046/j.1365-2672.1999.00918.x

    Article  CAS  Google Scholar 

  • Olanya OM, Larkin RP (2006) Efficacy of essential oils and biopesticides on Phytophthora infestans suppression in laboratory and growth chamber studies. Biocontrol Sci Technol 16(9):901–917. doi:10.1080/09583150600827918

    Article  Google Scholar 

  • Ross RP, Morgan S, Hill C (2002) Preservation and fermentation: past, present and future. Int J Food Microbiol 79(1–2):3–16

    Article  CAS  Google Scholar 

  • Rouse S, van Sinderen D (2008) Bioprotective potential of lactic acid bacteria in malting and brewing. J Food Protect 71(8):1724–1733

    Google Scholar 

  • Ryan LAM, Zannini E, Dal Bello F, Pawlowska A, Koehler P, Arendt EK (2011) Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products. Int J Food Microbiol 146(3):276–283. doi:10.1016/j.ijfoodmicro.2011.02.036

    Article  Google Scholar 

  • Sathe SJ, Nawani NN, Dhakephalkar PK, Kapadnis BP (2007) Antifungal lactic acid bacteria with potential to prolong shelf-life of fresh vegetables. J Appl Microbiol 103(6):2622–2628. doi:10.1111/j.1365-2672.2007.03525.x

    Article  CAS  Google Scholar 

  • Schnurer J, Magnusson J (2005) Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci Technol 16(1–3):70–78. doi:10.1016/j.tifs.2004.02.014

    Article  Google Scholar 

  • Schöber-Butin B (2001) Late blight of the potato and its causal agent Phytophthora infestans (Mont.) de Bary. Mitt Biol Bundesanst Land- Forstwirtsch 384:1–64

    Google Scholar 

  • Shahidi Bonjar H, Barkhordar B, Pakgohar N, Aghighi S, Biglary S, Rashid Farrokhi P, Aminaii M, Mahdavi MJ, Aghelizadeh A (2006) Biological control of Phytophthora drechsleri Tucker, the causal agent of pistachio gummosis, under greenhouse conditions by use of actinomycetes. Plant Pathology J 5:20–23

    Article  Google Scholar 

  • Shattock RC (2002) Phytophthora infestans: populations, pathogenicity and phenylamides. Pest Manag Sci 58(9):944–950. doi:10.1002/ps.527

    Article  CAS  Google Scholar 

  • Silva HSA, Romeiro RS, Carrer R, Pereira JLA, Mizubuti ESG, Mounteer A (2004) Induction of systemic resistance by Bacillus cereus against tomato foliar diseases under field conditions. J Phytopathol 152(6):371–375. doi:10.1111/j.1439-0434.2004.00853.x

    Article  Google Scholar 

  • Slininger PJ, Schisler DA, Eirjcsson LD, Brandt TL, Frazier MJ, Woodell LK, Olsen NL, Kleinkopf GE (2007) Biological control of post-harvest late blight of potatoes. Biocontrol Sci Technol 17(5–6):647–663. doi:10.1080/09583150701408881

    Article  Google Scholar 

  • Son SW, Kim HY, Choi GJ, Lim HK, Jang KS, Lee SO, Lee S, Sung ND, Kim JC (2008) Bikaverin and fusaric acid from Fusarium oxysporum show antioomycete activity against Phytophthora infestans. J Appl Microbiol 104(3):692–698. doi:10.1111/j.1365-2672.2007.03581.x

    Article  CAS  Google Scholar 

  • Stephan D, Schmitt A, Carvalho SM, Seddon B, Koch E (2005) Evaluation of biocontrol preparations and plant extracts for the control of Phytophthora infestans on potato leaves. Eur J Plant Pathol 112(3):235–246. doi:10.1007/s10658-005-2083-1

    Article  Google Scholar 

  • Stern BR, Solioz M, Krewski D, Aggett P, Aw TC, Baker S, Crump K, Dourson M, Haber L, Hertzberg R, Keen C, Meek B, Rudenko L, Schoeny R, Slob W, Starr T (2007) Copper and human health: biochemistry, genetics, and strategies for modeling dose-response relationships. J Toxicol Environ Health Crit Rev 10(3):157–222. doi:10.1080/10937400600755911

    Article  CAS  Google Scholar 

  • Stiles ME (1996) Biopreservation by lactic acid bacteria. Anton Leeuw Int J G 70(2–4):331–345. doi:10.1007/bf00395940

    Article  CAS  Google Scholar 

  • Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36(1):1–29. doi:10.1016/s0168-1605(96)01233-0

    Article  CAS  Google Scholar 

  • Stiles J, Penkar S, Plockova N, Chumchalova J, Bullerman LB (2002) Antifungal activity of sodium acetate and Lactobacillus rhamnosus. J Food Prot 65(7):1188–1191

    CAS  Google Scholar 

  • Toquin V, Barja F, Sirven C, Gamet S, Mauprivez L, Peret P, Latorse M-P, Zundel J-L, Schmitt F, Lebrun M-H, Beffa R (2009) Novel tools to identify the mode of action of fungicides as exemplified with fluopicolide. In: Gisi, U Chet I (ed) Recent Developments in Management of Plant Diseases. Springer-Verlag, Berlin, Germany, pp 19–35

    Google Scholar 

  • Valerio F, Favilla M, De Bellis P, Sisto A, de Candia S, Lavermicocca P (2009) Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products. Syst Appl Microbiol 32(6):438–448. doi:10.1016/j.syapm.2009.01.004

    Article  CAS  Google Scholar 

  • Wang H-k, Shi Y-c, Zhang H-p, Qi W (2010) Study on the inhibition of Phytophthora. drechsleri Tucker by Lactobacillus plantarum Bx6-2 isolated from koumiss. Journal of Tianjin University of Science & Technology 1

  • Wang H, Yan Y, Wang J, Zhang H, Qi W (2012) Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014. PLoS One 7(1):e29452

    Article  CAS  Google Scholar 

  • Yan ZN, Reddy MS, Ryu CM, McInroy JA, Wilson M, Kloepper JW (2002) Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92(12):1329–1333. doi:10.1094/phyto.2002.92.12.1329

    Article  CAS  Google Scholar 

  • Yang VW, Clausen CA (2005) Determining the suitability of lactobacilli antifungal metabolites for inhibiting mould growth. World J Microbiol Biotechnol 21(6–7):977–981. doi:10.1007/s11274-004-7552-8

    Article  CAS  Google Scholar 

  • Yang XF, Qiu DW, Yang HW, Liu Z, Zeng HM, Yuan JJ (2011) Antifungal activity of xenocoumacin 1 from Xenorhabdus nematophilus var. pekingensis against Phytophthora infestans. World J Microbiol Biotechnol 27(3):523–528. doi:10.1007/s11274-010-0485-5

    Article  CAS  Google Scholar 

  • Young DH, Spiewak SL, Slawecki RA (2001) Laboratory studies to assess the risk of development of resistance to zoxamide. Pest Manag Sci 57(11):1081–1087. doi:10.1002/ps.399

    Article  CAS  Google Scholar 

  • Zakharchenko NS, Kochetkov VV, Buryanov YI, Boronin AM (2011) Effect of rhizosphere bacteria Pseudomonas aureofaciens on the resistance of micropropagated plants to phytopathogens. Appl Biochem Microbiol 47(7):661–666. doi:10.1134/s0003683811070118

    Article  CAS  Google Scholar 

  • Zhang N, Wu K, He X, Li SQ, Zhang ZH, Shen BA, Yang XM, Zhang RF, Huang QW, Shen QR (2011) A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant Soil 344(1–2):87–97. doi:10.1007/s11104-011-0729-7

    Article  CAS  Google Scholar 

  • Zhou T, Zeng H, Qiu D, Yang X, Wang B, Chen M, Guo L, Wang S (2011) Global transcriptional responses of Bacillus subtilis to xenocoumacin 1. J Appl Microbiol 111(3):652–662. doi:10.1111/j.1365-2672.2011.05086.x

    Article  CAS  Google Scholar 

  • Ziogas BN, Markoglou AN, Theodosiou DI, Anagnostou A, Boutopoulou S (2006) A high multi-drug resistance to chemically unrelated oomycete fungicides in Phytophthora infestans. Eur J Plant Pathol 115(3):283–292. doi:10.1007/s10658-006-9007-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke K. Arendt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Axel, C., Zannini, E., Coffey, A. et al. Ecofriendly control of potato late blight causative agent and the potential role of lactic acid bacteria: a review. Appl Microbiol Biotechnol 96, 37–48 (2012). https://doi.org/10.1007/s00253-012-4282-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4282-y

Keywords

Navigation