[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Reasoning about faulty quantum programs

  • Original Article
  • Published:
Acta Informatica Aims and scope Submit manuscript

Abstract

We show how to use a programming language for formally describing and reasoning about errors in quantum computation. The formalisation is based on the concept of performing the correct operation with probability at least p, and the erroneous one with probability at most 1 − p. We apply the concept to two examples: Bell’s inequalities and the Deutsch–Jozsa quantum algorithm. The former is a fundamental thought experiment aimed at showing that Quantum Mechanics is not “local and realist”, and it is used in quantum cryptography protocols. We study it assuming faulty measurements, and we derive hardware reliability conditions that must be satisfied in order for the experiment to support its conclusions. The latter is a quantum algorithm for efficiently solving a classification problem for Boolean functions. The algorithm solves the problem with no error, but when we introduce faulty operations it becomes a two-sided error algorithm. Reasoning is accomplished via standard programming laws and quantum laws.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aharonov D., Kitaev A., Nisan N.: Quantum circuits with mixed states. In: STOC ’98: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, pp. 20–30 (1998)

  2. Altenkirch T., Grattage J.: A functional quantum programming language. In LICS ’05: Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science, pp. 249–258 (2005)

  3. Aspect A., Graingier P., Roger G.: Experimental realization of EPR Gedankenexperiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 91–94 (1982)

    Article  Google Scholar 

  4. Bell J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  5. Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Clauser J.F., Horne M.A., Shimony A., Holt R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    Article  Google Scholar 

  7. Deutsch D., Jozsa R.: Rapid solution of problems by quantum computation. Proc. R. Soc. London A439, 553–558 (1992)

    MathSciNet  Google Scholar 

  8. Ekert A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fedrizzi A. et al.: High-fidelity transmission of entanglement over a high-loss freespace channel. Nat. Phys. 5, 389–392 (2009)

    Article  Google Scholar 

  10. Gay S.J.: Quantum programming languages: survey and bibliography. Math. Struct. Comput. Sci. 16(4), 581–600 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. He J., McIver A., Seidel K.: Probabilistic models for the guarded command language. Sci. Comput. Program. 28, 171–192 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Isham C.J.: Lectures on quantum theory. Imperial College Press, London (1997)

    Google Scholar 

  13. McIver A., Morgan C.C.: Abstraction, Refinement and Proof for Probabilistic Systems. Springer, Berlin (2005)

    MATH  Google Scholar 

  14. Morgan C.C., McIver A., Seidel K.: Probabilistic predicate transformers. ACM Trans. Program. Lang. Syst. 18(3), 325–353 (1996)

    Article  Google Scholar 

  15. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  16. Reed M., Simon B.: Methods of Mathematical Physics. I. Functional Analysis. Acamedic Press, Dublin (1972)

    Google Scholar 

  17. Sanders, J.W., Zuliani, P.: Quantum programming. In: MPC’00: Mathematics of Program Construction, Springer LNCS, vol. 1837, pp. 80–99 (2000)

  18. Selinger P.: Towards a quantum programming language. Math. Struct. Comput. Sci. 14(4), 527–586 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ursin R. et al.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007)

    Article  Google Scholar 

  20. von Neumann J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, New Jersey (1955)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Zuliani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuliani, P. Reasoning about faulty quantum programs. Acta Informatica 46, 403–432 (2009). https://doi.org/10.1007/s00236-009-0100-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00236-009-0100-0

Keywords

Navigation