Abstract
In this article, we describe some recent results on the hybridization methods for the analysis of nonlinear systems. The main idea of our hybridization approach is to apply the hybrid systems methodology as a systematic approximation method. More concretely, we partition the state space of a complex system into regions that only intersect on their boundaries, and then approximate its dynamics in each region by a simpler one. Then, the resulting hybrid system, which we call a hybridization, is used to yield approximate analysis results for the original system. We also prove important properties of the hybridization, and propose two effective hybridization construction methods, which allow approximating the original nonlinear system with a good convergence rate.
Similar content being viewed by others
References
Alur R., Courcoubetis C., Halbwachs N., Henzinger T.A., Ho P.-H., Nicollin X., Olivero A., Sifakis J. and Yovine S. (1995). The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1): 3–34
Alur R., Dang T. and Ivancic F. (2006). Counter-example guided predicate abstraction of hybrid systems. Theor. Comput. Sci. 354(2): 250–271
Alur R. and Dill D.L. (1994). A theory of timed automata. Theor. Comput. Sci. 126(2): 183–235
Alur R., Henzinger T.A., Lafferriere G. and Pappas G. (2000). Discrete abstractions of hybrid systems. Proc. IEEE 88(2): 971–984
Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimination. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) Hybrid Systems: Computation and Control, vol. 2034 in LNCS, pp. 63–75. Springer, Heidelberg (2001)
Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate reachability analysis of piecewise-linear dynamical systems. In: Krogh, B.H., Lynch, N. (eds.) Hybrid Systems: Computation and Control, vol. 1790 in LNCS, pp. 20–31. Springer, Heidelberg (2000)
Asarin, E., Dang, T., Maler, O.: d/dt: A tool for verification of hybrid systems. In: Ed Brinksma, Kim Guldstrand Larsen (eds.) Computer Aided Verification, vol. 2404 in LNCS, pp. 365–370. Springer, Heidelberg (2002)
Asarin, E., Dang, T.: Abstraction by projection and application to multi-affine systems. In: Alur, R., Pappas, G.J. (eds) Hybrid Systems: Control and Computation, vol. 2993 LNCS, pp. 32–47. Springer, Heidelberg (2004)
Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using conservative approximations. In: Maler, O., Pnueli, A. (eds.) Hybrid Systems: Computation and Control, vol. 2623 in LNCS, pp. 20–35. Springer, Heidelberg (2003)
Asarin E., Maler O. and Pnueli A. (1995). Reachability analysis of dynamical systems having piecewise-constant derivatives. Theor. Comput. Sci. 138(1): 35–66
Aubin J.-P., Lygeros J., Quincampoix M., Sastry S. and Seube N. (2002). Impulse differential inclusions: a viability approach to hybrid systems. IEEE Trans. Autom. Control 47(1): 2–20
Barringer, H., Kuiper, R., Pnueli, A.: A really abstract concurrent model and its temporal logic. In: POPL’86: Principles of Programming Languages, pp. 173–183 (1986)
Botchkarev, O., Tripakis, S.: Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations. In: Krogh B., Lynch N. (eds.), Hybrid Systems: Computation and Control, vol. 1790 in LNCS, pp. 73–88. Springer, Heidelberg (2000)
Branicky M.S., Borkar V.S. and Mitter S.K. (1998). A unified framework for hybrid control: model and optimal control theory. IEEE Trans. on Automatic Control 43(1): 31–45
Chutinan, A., Krogh, B.H.: Verification of polyhedral-invariant hybrid automata using polygonal flow pipe approximations. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) Hybrid systems: Computation and Control, vol. 1569 in LNCS, pp. 76–90. Springer, Heidelberg (1999)
Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int. J. Foundations of Comput. Sci. 14(4), 583–604 (2003)
Dang, T.: Approximate reachability computation for polynomial systems. In: Hespanha, J., Tiwari, A. (eds.) Hybrid Systems: Control and Computation, vol. 3927 in LNCS, pp. 138–152. Springer, Heidelberg (2006)
Dang, T., Donze, A., Maler, O.: Verification of analog and mixed-signal circuits using hybrid systems techniques. In: Hu, A., Martin, A. (eds.) Formal Methods for Computer Aided Design, vol. 3312 in LNCS, pp. 21–36. Springer, Heidelberg (2004)
Dang, T., Maler, O.: Reachability Analysis via Face Lifting. In: Henzinger, T.A., Sastry, S. (eds.), Hybrid Systems: Computation and Control, vol. 1386 in LNCS, pp. 96–109. Springer, Heidelberg (1998)
Davoren, J.M., Coulthard, V., Markey, N., Moor, T.: Non-deterministic temporal logics for general flow systems. In: Alur, R., G.J. Pappas, G.J. (eds.) Hybrid Systems: Computation and Control HSCC04, vol. 2993 in LNCS, pp. 280–295. Springer, Heidelberg (2004)
Decarlo R.A., Branicky M.S., Pettersson S. and Lennartson B. (2000). Perspectives and results on the stability and stabilizability of hybrid systems. Proc. the IEEE 88(7): 1069–1082
Della Dora, J., Maignan, A., Mirica-Ruse, M., Yovine, S.: Hybrid computation. In: Proceedings International Symposium on Symbolic and Algebraic Computation ISSAC’01 (2001)
Dieudonné J. (1968). Calcul Infinitésimal. Collection Méthodes. Hermann, Paris
Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 995–1072. Elsevier, Amsterdam (1990)
Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) Hybrid Systems: Computation and Control, vol. 3414 in LNCS, pp. 258–273. Springer, Heidelberg (2005)
Girard, A.: Approximate solutions of ODEs using piecewise linear vector fields. In: Proceedings of the Int. Workshop on Computer Algebra in Scientific Computing CASC’02 (2002)
Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) Hybrid Systems: Computation and Control, vol. 3414 in LNCS, pp. 291–305. Springer, Heidelberg (2005)
Greenstreet, M.R., Mitchell, I.: Reachability analysis using polygonal projections. In: Vaandrager, F., van Schuppen, J.H. (eds.) Hybrid Systems: Computation and Control, vol. 1569 in LNCS, pp. 76–90. Springer, Heidelberg (1999)
Habets, L.C.G.J.M., van Schuppen, J.H.: Control of piecewise-linear hybrid systems on simplices and rectangles. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) Hybrid systems: Computation and Control, vol.. 2034 LNCS, pp. 261–273. Springer, Heidelberg (2001)
Hämmerlin G. and Karl-Heinz Hoffmann K.-H. (1991). Numerical Mathematics. Springer, Heidelberg
Hartong, W., Hedrich, L., Barke, E.: On discrete modelling and model checking for nonlinear analog systems. In: Ed Brinksma, Kim Guldstrand Larsen (eds.) Computer Aided Verification, vol. 2404 in LNCS, pp. 401–413. Springer, Heidelberg (2002)
Henzinger T.A., Ho P.-H. and Wong-Toi H. (1997). HyTech: A model checker for hybrid systems. Softw. Tools Technol. Transf. 1(1–2): 110–122
Henzinger T.A., Kopke P.W., Puri A. and Varaiya P. (1998). What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57(1): 94–124
Hubbard, J., West, B.: Differential equations: a dynamical system approach, part 2: higher dimensional systems. Texts in Applied Mathematics, 18 Springer, Heidelberg (1995)
Johansson M. and Rantzer A. (1998). Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Trans. Autom. Control 43(4): 555–559
Kloetzer, M., Belta, C.: Reachability analysis of multi-affine systems. In: Hespanha, J., Tiwari, A. (eds.) Hybrid Systems: Computation and Control, vol. 3927 in LNCS, pp. 348–362. Springer, Heidelberg (2006)
Kratz, F., Sokolsky, O., Pappas, G.J., Lee, I.: R-Charon : a modeling language for reconfigurable hybrid systems. In: Hespanha, J., Tiwari, A. (eds.) Hybrid Systems: Computation and Control, vol. 3927 in LNCS, pp. 392–406. Springer, Heidelberg (2006)
Kuhn H.W. (1960). Some combinatorial lemmas in topology. IBM J. Res. Dev. 4(5): 518–524
Kurzhanski, A., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: Krogh, B., Lynch, N. (eds.) Hybrid Systems: Computation and Control, vol. 1790 in LNCS, pp. 202–214. Springer, Heidelberg (2000)
Lafferriere G., Pappas G. and Yovine S. (2001). Symbolic reachability computation of families of linear vector fields. J. Symbolic Comput. 32(3): 231–253
Larsen K., Pettersson P. and Yi W. (1997). Uppaal in a nutshell. Soft. Tools Technol. Transf. 1(1–2): 134–152
Liberzon D. (2003). Switching in systems and control. Volume in series Systems and Control: Foundations and Applications. Birkhauser, Boston
Manna Z. and Pnueli A. (1991). The temporal logic of reactive and concurrent systems: specification. Springer, New York
Mitchell, I., Templeton, J.A.: A toolbox of Hamilton-Jacobi solvers for analysis of nondeterministic continuous and hybrid Systems. In: Morari, M., Thiele, L. (eds.) Hybrid Systems: Computation and Control, vol. 3414 in LNCS, pp. 480–494. Springer, Heidelberg (2005)
Kvasnica, M., Grieder, P., Baoti, M., Morari, M.: Multi-Parametric Toolbox (MPT). In: Alur, R., Pappas, G.J. (eds.) Hybrid Systems: Computation and Control, vol. 2993 in LNCS, pp. 448–462. Springer, Heidelberg (2004)
Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, A., Pappas, G. (eds.) Hybrid Systems: Computation and Control, vol. 2993 LNCS, pp. 477–492. Springer, Heidelberg (2004)
Prajna, S., Papachristodoulou, A.: Analysis of switched and hybrid systems - beyond piecewise quadratic methods. In: Proceedings of the American Control Conference ACC (2003)
Puri, A., Varaiya, P.: Verification of sybrid systems using abstraction. In: Antsaklis, P., Kohn, W., Nerode, A., Sastry, S. (eds.) Hybrid Systems II, vol. 999 in LNCS, pp. 359–369, Springer, Heidelberg (1995)
Rondepierre, A., Dumas, J.G.: Algorithms for hybrid optimal control. Technical report IMAG-ccsd-00004191, arXiv math.OC/0502172 (2005)
Saint-Pierre, P.: Approximation of Viability Kernels and Capture Basin for Hybrid Systems. In: Proceedings of European Control Conference ECC’01, pp. 2776–2783 (2001)
Sastry S. (1999). Nonlinear systems: analysis, stability and control. Springer, Heidelberg
Stuart A.M. and Humphries A.R. (1996). Dynamical systems and numerical analysis. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge
Stursberg, O., Kowalewski, S.: Approximating switched continuous systems by rectangular automata. In: Proceedings European Control Conference ECC, (1999)
Tabuada, P., Pappas, G.: Model-checking LTL over controllable linear systems is decidable, In: Maler, O., Pnueli, A. (eds.) Hybrid Systems: Computation and Control, vol. 2623 LNCS, pp. 498–513, Springer, Heidelberg (2003)
Tiwari, A., Khanna, G.: Series of abstractions for hybrid automata. In: Tomlin, C., Greenstreet, M.R. (eds.) Hybrid Systems: Computation and Control, vol. 2289 LNCS, pp. 465–478, (2002)
Tiwari, A., Khanna, A.: Nonlinear systems: approximating reach sets. In: Alur, R., Pappas, G.J. (eds.) Hybrid Systems: Computation and Control, vol. 2993 LNCS, pp. 600–614. Springer, Heidelberg (2004)
Tomlin C., Mitchell I., Bayen A. and Oishi M. (2003). Computational techniques for the verification of hybrid systems. Proc. IEEE 91(7): 986–1001
Torrisi F.D. and Bemporad A. (2004). HYSDEL - A tool for generating computational hybrid models. IEEE Trans. Control Syst. Technol. 12(2): 235–249
Van der Schaft, A.J., Schumacher, J.M.: An introduction to hybrid dynamical systems. Lect. Notes in Control and Information Sciences, Vol 251. Springer, London, (2000)
Yovine, S.: Kronos: A verification tool for real-time systems. Soft. Tools Technol. Trans. 1(1–2), 123–133 (1997)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Asarin, E., Dang, T. & Girard, A. Hybridization methods for the analysis of nonlinear systems. Acta Informatica 43, 451–476 (2007). https://doi.org/10.1007/s00236-006-0035-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00236-006-0035-7