Abstract
Building on Donaldson’s work on constant scalar curvature metrics, we study the space of regular Kähler metrics E ω , i.e. those for which deformation quantization has been defined by Cahen, Gutt and Rawnsley. After giving, in Sects. 2 and 3 a review of Donaldson’s moment map approach, we study the ‘‘essential’’ uniqueness of balanced basis (i.e. of coherent states) in a more general setting (Theorem 2.5). We then study the space E ω in Sect.4 and we show in Sect.5 how all the tools needed can be defined also in the case of non-compact manifolds.
Similar content being viewed by others
References
Arezzo, C., Loi, A.: Quantization of Kähler manifolds and the asymptotic expansion of Tian–Yau–Zelditch. J. Geom. Phys. 47, 87–99 (2003)
Berezin, F.A.: Quantization. Math. USSR Izv. 8, 1109–1165 (1974)
Cahen, M., Gutt, S., Rawnsley, J. H.: Quantization of Kähler manifolds I: Geometric interpretation of Berezin’s quantization. J. Geom. Phys. 7, 45–62 (1990)
Cahen, M., Gutt, S., Rawnsley, J. H.: Quantization of Kähler manifolds II. Trans. Am. Math. Soc. 337, 73–98 (1993)
Cahen, M., Gutt, S., Rawnsley, J. H.: Quantization of Kähler manifolds III. Lett. Math. Phys. 30, 291–305 (1994)
Cahen, M., Gutt, S., Rawnsley, J. H.: Quantization of Kähler manifolds IV. Lett. Math. Phys. 34, 159–168 (1995)
Calabi, E.: Isometric Imbeddings of Complex Manifolds. Ann. of Math. 58, 1–23 (1953)
Chen, X–X.: The space of Kähler metrics. J. Diff. Geom. 56, 189–234 (2000)
Donaldson, S.: Scalar Curvature and Projective Embeddings, I. J. Diff. Geom. 59, 479–522 (2001)
Griffiths, P., Harris, J.: Principles of Algebraic Geometry. New York: John Wiley and Sons Inc., 1978
Hitchin, N., Karlhede, A., Lindström, U., Roček, M.: Hyperkäler Metrics and Supersymmetry. Commun. Math. Phys. 108, 535–589 (1987)
Kobayashi, S.: Trasformation Group in Differential Geometry. Berlin-Heidelberg-New York: Springer Verlag, 1972
Kobayashi, S.: Differential Geometry of Complex Vector bundles. Princeton, NJ: Princeton University Press, 1987
Loi, A.: The function epsilon for complex tori and Riemann surfaces. Bull. Belg. Math. Soc. Simon Stevin 7(2), 229–236 (2000)
Loi, A.: Quantization of bounded domains. J. Geom. Phys. 29, 1–4 (1999)
Lu, Z.: On the lower terms of the asymptotic expansion of Tian–Yau–Zelditch. Am. J. Math. 122, 235–273 (2000)
Luo, H.: Geometric criterion for Gieseker–Mumford stability of polarized Kähler manifolds. J. Diff. Geom. 49, 577–599 (1998)
Rawnsley, J. H.: Coherent states and Kähler manifolds. The Quarterly J. Math. 403–415 (1977)
Takeuchi, M.: Homogeneous Kähler Manifolds in Complex Projective Space. Japan J. Math. 4, 171–219 (1978)
Tian, G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Diff. Geom. 32, 99–130 (1990)
Tian, G.: The K-energy on hypersurfaces and stability. Comm. Anal. Geom. 2, 239–265 (1994)
Tian, G.: Kähler–Einstein metrics with positive scalar curvature. Invent. Math. 130, 1–37 (1997)
Tian, G.: Bott–Chern forms and geometric stability. Discrete Contin. Dynam. Syst. 6, 211–220 (2000)
Yau, S.-T.: Nonlinear analysis in geometry. Enseign. Math. 33, 109–158 (1987)
Zeldtich, S.: Szegö Kernel and a Theorem of Tian. Int. Math. Res. Notices 317–331 (1998)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by M.R. Douglas
Rights and permissions
About this article
Cite this article
Arezzo, C., Loi, A. Moment Maps, Scalar Curvature and Quantization of Kähler Manifolds. Commun. Math. Phys. 246, 543–559 (2004). https://doi.org/10.1007/s00220-004-1053-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00220-004-1053-3