[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Individualized dosing of oral targeted therapies in oncology is crucial in the era of precision medicine

  • Point of View
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

While in the era of precision medicine, the right drug for each patient is selected based on molecular tumor characteristics, most novel oral targeted anticancer agents are still being administered using a one-size-fits-all fixed dosing approach. In this review, we discuss the scientific evidence for dose individualization of oral targeted therapies in oncology, based on therapeutic drug monitoring (TDM).

Methods

Based on literature search and our own experiences, seven criteria for drugs to be suitable candidates for TDM will be addressed: (1) absence of an easily measurable biomarker for drug effect; (2) long-term therapy; (3) availability of a validated sensitive bioanalytical method; (4) significant variability in pharmacokinetic exposure; (5) narrow therapeutic range; (6) defined and consistent exposure-response relationships; (7) feasible dose-adaptation strategies.

Results

All of these requirements are met for most oral targeted therapies in oncology. Also, prospective studies have already shown TDM to be feasible for imatinib, pazopanib, sunitinib, everolimus, and endoxifen.

Conclusions

In order to realize the full potential of personalized medicine in oncology, patients should not only be treated with the right drug, but also at the right dose. TDM could be a suitable tool to achieve this.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brummelen EMJ, Huitema ADR, Werkhoven E et al (2016) The performance of model-based versus rule-based phase I clinical trials in oncology. J Pharmacokinet Pharmacodyn 43:235–242. https://doi.org/10.1007/s10928-016-9466-0

    Article  CAS  PubMed  Google Scholar 

  2. Mathijssen RHJ, Sparreboom A, Verweij J (2014) Determining the optimal dose in the development of anticancer agents. Nat Rev Clin Oncol 11:272–281. https://doi.org/10.1038/nrclinonc.2014.40

    Article  CAS  PubMed  Google Scholar 

  3. Willemsen AEACB, Lubberman FJE, Tol J et al (2016) Effect of food and acid-reducing agents on the absorption of oral targeted therapies in solid tumors. Drug Discov Today 21:962–976. https://doi.org/10.1016/j.drudis.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  4. Yu H, van Erp N, Bins S, Mathijssen RHJ, Schellens JHM, Beijnen JH, Steeghs N, Huitema ADR (2017) Development of a pharmacokinetic model to describe the complex pharmacokinetics of pazopanib in cancer patients. Clin Pharmacokinet 56:293–303. https://doi.org/10.1007/s40262-016-0443-y

    Article  CAS  PubMed  Google Scholar 

  5. Verheijen RB, Yu H, Schellens JHM, Beijnen JH, Steeghs N, Huitema ADR (2017) Practical recommendations for therapeutic drug monitoring of kinase inhibitors in oncology. Clin Pharmacol Ther 102:765–776. https://doi.org/10.1002/cpt.787

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yu H, Steeghs N, Nijenhuis C et al (2014) Practical guidelines for therapeutic drug monitoring of anticancer tyrosine kinase inhibitors: focus on the pharmacokinetic targets. Clin Pharmacokinet 53:305–325. https://doi.org/10.1007/s40262-014-0137-2

    Article  CAS  PubMed  Google Scholar 

  7. Groenland SL, Van Nuland M, Verheijen RB et al (2019) Therapeutic drug monitoring of oral anti- hormonal drugs in oncology. Clin Pharmacokinet 58:299–308. https://doi.org/10.1007/s40262-018-0683-0

    Article  CAS  PubMed  Google Scholar 

  8. Widmer N, Bardin C, Chatelut E, Paci A, Beijnen J, Levêque D, Veal G, Astier A (2014) Review of therapeutic drug monitoring of anticancer drugs part two - targeted therapies. Eur J Cancer 50:2020–2036. https://doi.org/10.1016/j.ejca.2014.04.015

    Article  CAS  PubMed  Google Scholar 

  9. De Wit D, Guchelaar HJ, Den Hartigh J et al (2015) Individualized dosing of tyrosine kinase inhibitors: are we there yet? Drug Discov Today 20:18–36. https://doi.org/10.1016/j.drudis.2014.09.007

    Article  CAS  PubMed  Google Scholar 

  10. Mcleod HL (1997) Therapeutic drug monitoring opportunities in cancer therapy. Pharmacol Ther 74:39–54. https://doi.org/10.1016/S0163-7258(96)00201-X

    Article  CAS  PubMed  Google Scholar 

  11. Galpin AJ, Evans WE (1993) Therapeutic drug monitoring in cancer management. Clin Chem 39:2419–2430

    CAS  PubMed  Google Scholar 

  12. Massoni E, Zamboniz WC (1997) Pharmacokinetic optimisation of cancer chemotherapy - effect on outcomes. Clin Pharmacokinet 32:324–343. https://doi.org/10.2165/00003088-199732040-00005

    Article  Google Scholar 

  13. Hon YY, Evans WE (1998) Making TDM work to optimize cancer chemotherapy : a multidisciplinary team approach. Clin Chem 400:388–400

    Google Scholar 

  14. De Jonge ME, Huitema ADR, Schellens JHM et al (2005) Individualised cancer chemotherapy: strategies and performance of prospective studies on therapeutic drug monitoring with dose adaptation: a review. Clin Pharmacokinet 44:147–173. https://doi.org/10.2165/00003088-200544020-00002

    Article  PubMed  Google Scholar 

  15. Rustin GJS, Van Der Burg MEL, Griffin CL et al (2010) Early versus delayed treatment of relapsed ovarian cancer (MRC OV05/EORTC 55955): a randomised trial. Lancet 376:1155–1163. https://doi.org/10.1016/S0140-6736(10)61268-8

    Article  PubMed  Google Scholar 

  16. Rini BI, Melichar B, Ueda T, Grünwald V, Fishman MN, Arranz JA, Bair AH, Pithavala YK, Andrews GI, Pavlov D, Kim S, Jonasch E (2013) Axitinib with or without dose titration for first-line metastatic renal-cell carcinoma: a randomised double-blind phase 2 trial. Lancet Oncol 14:1233–1242. https://doi.org/10.1016/S1470-2045(13)70464-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steffens M, Paul T, Hichert V, Scholl C, von Mallek D, Stelzer C, Sörgel F, Reiser B, Schumann C, Rüdiger S, Boeck S, Heinemann V, Kächele V, Seufferlein T, Stingl J (2016) Dosing to rash? - the role of erlotinib metabolic ratio from patient serum in the search of predictive biomarkers for EGFR inhibitor-mediated skin rash. Eur J Cancer 55:131–139. https://doi.org/10.1016/j.ejca.2015.11.022

    Article  CAS  PubMed  Google Scholar 

  18. Perez CA, Song H, Raez LE, Agulnik M, Grushko TA, Dekker A, Stenson K, Blair EA, Olopade OI, Seiwert TY, Vokes EE, Cohen EEW (2012) Phase II study of gefitinib adaptive dose escalation to skin toxicity in recurrent or metastatic squamous cell carcinoma of the head and neck. Oral Oncol 48:887–892

    Article  CAS  PubMed  Google Scholar 

  19. Jabbour E, Kantarjian H, O’Brien S et al (2011) The achievement of an early complete cytogenetic response is a major determinant for outcome in patients with early chronic phase chronic myeloid leukemia treated with tyrosine kinase inhibitors. Blood 118:4541–4547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Armstrong AJ, Saad F, Phung D, Dmuchowski C, Shore ND, Fizazi K, Hirmand M, Forer D, Scher HI, Bono JD (2017) Clinical outcomes and survival surrogacy studies of prostate-specific antigen declines following enzalutamide in men with metastatic castration-resistant prostate cancer previously treated with docetaxel. Cancer 123:2303–2311. https://doi.org/10.1002/cncr.30587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Food and Drug Administration (2012) Center for Drug Evaluation and Research Enzalutamide clinical pharmacology and biopharmaceutics review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/203415Orig1s000ClinPharmR.pdf. Accessed 15 January 2019

  22. Summary of product characteristics - tamoxifen. https://www.medicines.org.uk/emc/product/2248/smpc. Accessed 15 January 2019

  23. Herbrink M, De VN, Rosing H et al (2016) Quantification of 11 therapeutic kinase inhibitors in human plasma for therapeutic drug monitoring using liquid chromatography coupled with tandem mass spectrometry. Ther Drug Monit 38:649–656. https://doi.org/10.1097/FTD.0000000000000349

    Article  CAS  PubMed  Google Scholar 

  24. Herbrink M, De Vries N, Rosing H et al (2018) Development and validation of a liquid chromatography – tandem mass spectrometry analytical method for the therapeutic drug monitoring of eight novel anticancer drugs. Biomed Chromatogr 32:1–9. https://doi.org/10.1002/bmc.4147

    Article  CAS  Google Scholar 

  25. Van NM, Venekamp N, De VN et al (2019) Development and validation of an UPLC-MS / MS method for the therapeutic drug monitoring of oral anti-hormonal drugs in oncology. J Chromatogr B 1106–1107:26–34. https://doi.org/10.1016/j.jchromb.2019.01.001

    Article  CAS  Google Scholar 

  26. Jager NGL, Rosing H, Linn SC, Schellens JHM, Beijnen JH (2015) Dried blood spot self-sampling at home for the individualization of tamoxifen treatment: a feasibility study. Ther Drug Monit 37:833–836. https://doi.org/10.1097/ftd.0000000000000224

    Article  PubMed  Google Scholar 

  27. Verheijen RB, Bins S, Thijssen B, Rosing H, Nan L, Schellens JHM, Mathijssen RHJ, Lolkema MP, Beijnen JH, Steeghs N, Huitema ADR (2016) Development and clinical validation of an LC-MS/MS method for the quantification of pazopanib in DBS. Bioanalysis 8:123–134. https://doi.org/10.4155/bio.15.235

    Article  CAS  PubMed  Google Scholar 

  28. De Wit D, Den Hartigh J, Gelderblom H et al (2015) Dried blood spot analysis for therapeutic drug monitoring of pazopanib. J Clin Pharmacol 55:1344–1350. https://doi.org/10.1002/jcph.558

    Article  CAS  PubMed  Google Scholar 

  29. Antunes MV, Raymundo S, Wagner SC, Mattevi VS, Vieira N, Leite R, Reginato F, Capra MZ, Fogliatto L, Linden R (2015) DBS sampling in imatinib therapeutic drug monitoring: from method development to clinical application. Bioanalysis 7:2105–2117. https://doi.org/10.4155/bio.15.101

    Article  CAS  PubMed  Google Scholar 

  30. Verheijen RB, Thijssen B, Atrafi F, Schellens JHM, Rosing H, de Vries N, Beijnen JH, Mathijssen RHJ, Steeghs N, Huitema ADR (2019) Validation and clinical application of an LC-MS/MS method for the quantification of everolimus using volumetric absorptive microsampling. J Chromatogr B 1104:234–239. https://doi.org/10.1016/j.jchromb.2018.11.030

    Article  CAS  Google Scholar 

  31. Willemsen AECAB, Knapen LM, de Beer YM, Brüggemann RJM, Croes S, van Herpen CML, van Erp NP (2018) Clinical validation study of dried blood spot for determining everolimus concentration in patients with cancer. Eur J Clin Pharmacol 74:465–471. https://doi.org/10.1007/s00228-017-2394-0

    Article  CAS  PubMed  Google Scholar 

  32. Boons CCLM, Chahbouni A, Schimmel AM, Wilhelm AJ, den Hartog YM, Janssen JJWM, Hendrikse NH, Hugtenburg JG, Swart EL (2017) Dried blood spot sampling of nilotinib in patients with chronic myeloid leukaemia: a comparison with venous blood sampling. J Pharm Pharmacol 69:1265–1274. https://doi.org/10.1111/jphp.12757

    Article  CAS  PubMed  Google Scholar 

  33. Nijenhuis CM, Huitema ADR, Marchetti S, Blank C, Haanen JBAG, van Thienen JV, Rosing H, Schellens JHM, Beijnen JH (2016) The use of dried blood spots for pharmacokinetic monitoring of vemurafenib treatment in melanoma patients. J Clin Pharmacol 56:1307–1312. https://doi.org/10.1002/jcph.728

    Article  CAS  PubMed  Google Scholar 

  34. Beumer JH, Kozo D, Harney RL, Baldasano CN, Jarrah J, Christner SM, Parise R, Baburina I, Courtney JB, Salamone SJ (2016) Automated imatinib immunoassay. Ther Drug Monit 37:486–492. https://doi.org/10.1097/FTD.0000000000000178

    Article  CAS  Google Scholar 

  35. Lankheet N, Knapen L, Schellens J et al (2014) Plasma concentrations of tyrosine kinase inhibitors imatinib, erlotinib, and sunitinib in routine clinical outpatient cancer care. Ther Drug Monit 36:326–334. https://doi.org/10.1097/FTD.0000000000000004

    Article  CAS  PubMed  Google Scholar 

  36. Verheijen RB, Swart LE, Beijnen JH, Schellens JHM, Huitema ADR, Steeghs N (2017) Exposure-survival analyses of pazopanib in renal cell carcinoma and soft tissue sarcoma patients: opportunities for dose optimization. Cancer Chemother Pharmacol 80:1171–1178. https://doi.org/10.1007/s00280-017-3463-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carton E, Noe G, Huillard O, Golmard L, Giroux J, Cessot A, Saidu NEB, Peyromaure M, Zerbib M, Narjoz C, Guibourdenche J, Thomas A, Vidal M, Goldwasser F, Blanchet B, Alexandre J (2017) Relation between plasma trough concentration of abiraterone and prostate-specific antigen response in metastatic castration-resistant prostate cancer patients. Eur J Cancer 72:54–61. https://doi.org/10.1016/j.ejca.2016.11.027

    Article  CAS  PubMed  Google Scholar 

  38. Nijenhuis CM, Huitema ADR, Blank C, Haanen JBAG, van Thienen JV, Rosing H, Schellens JHM, Beijnen JH (2016) Clinical pharmacokinetics of vemurafenib in BRAF-mutated melanoma patients. J Clin Pharmacol 57:125–128. https://doi.org/10.1002/jcph.788

    Article  CAS  PubMed  Google Scholar 

  39. Ouellet D, Gibiansky E, Leonowens C, O’Hagan A, Haney P, Switzky J, Goodman VL (2014) Population pharmacokinetics of dabrafenib, a BRAF inhibitor: effect of dose, time, covariates, and relationship with its metabolites. J Clin Pharmacol 54:696–706. https://doi.org/10.1002/jcph.263

    Article  CAS  PubMed  Google Scholar 

  40. Ouellet D, Kassir N, Chiu J, Mouksassi MS, Leonowens C, Cox D, DeMarini DJ, Gardner O, Crist W, Patel K (2016) Population pharmacokinetics and exposure-response of trametinib, a MEK inhibitor, in patients with BRAF V600 mutation-positive melanoma. Cancer Chemother Pharmacol 77:807–817. https://doi.org/10.1007/s00280-016-2993-y

    Article  CAS  PubMed  Google Scholar 

  41. van Leeuwen R, van Gelder T, Mathijssen R, Jansman F (2014) Drug-drug interactions with tyrosine-kinase inhibitors: a clinical perspective. Lancet Oncol 15:e315–e326. https://doi.org/10.1016/S1470-2045(13)70579-5

    Article  CAS  PubMed  Google Scholar 

  42. Chatelut E, Bruno R, Ratain MJ (2018) Intraindividual pharmacokinetic variability : focus on small- molecule kinase inhibitors. Clin Pharmacol Ther 103:956–958. https://doi.org/10.1002/cpt.937

    Article  PubMed  Google Scholar 

  43. Herbrink M, Nuijen B, Schellens JHM, Beijnen JH (2015) Variability in bioavailability of small molecular tyrosine kinase inhibitors. Cancer Treat Rev 41:412–422. https://doi.org/10.1016/j.ctrv.2015.03.005

    Article  CAS  PubMed  Google Scholar 

  44. Herbrink M, Nuijen B, Schellens JHM, Beijnen JH (2017) High-tech drugs in creaky formulations. Pharm Res 34:1751–1753. https://doi.org/10.1007/s11095-017-2185-4

    Article  CAS  PubMed  Google Scholar 

  45. Bullock JM, Rahman A, Liu Q (2016) Lessons learned: dose selection of small molecule – targeted oncology drugs. Clin Cancer Res 22:2630–2639. https://doi.org/10.1158/1078-0432.CCR-15-2646

    Article  CAS  PubMed  Google Scholar 

  46. Lacy S, Nielsen J, Yang B, Miles D, Nguyen L, Hutmacher M (2018) Population exposure – response analysis of cabozantinib efficacy and safety endpoints in patients with renal cell carcinoma. Cancer Chemother Pharmacol 81:1061–1070. https://doi.org/10.1007/s00280-018-3579-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hurwitz HI, Dowlati A, Saini S, Savage S, Suttle AB, Gibson DM, Hodge JP, Merkle EM, Pandite L (2009) Phase I trial of pazopanib in patients with advanced cancer. Clin Cancer Res 15:4220–4227. https://doi.org/10.1158/1078-0432.CCR-08-2740

    Article  CAS  PubMed  Google Scholar 

  48. Lankheet N, Desar I, Mulder S et al (2017) Optimizing the dose in cancer patients treated with imatinib, sunitinib and pazopanib. Br J Clin Pharmacol 83:2195–2204. https://doi.org/10.1111/bcp.13327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Verheijen RB, Bins S, Mathijssen RHJ, Lolkema MP, van Doorn L, Schellens JHM, Beijnen JH, Langenberg MHG, Huitema ADR, Steeghs N, on behalf of the Dutch Pharmacology Oncology Group (2016) Individualized pazopanib dosing: a prospective feasibility study in cancer patients. Clin Cancer Res 22:5738–5746. https://doi.org/10.1158/1078-0432.CCR-16-1255

    Article  CAS  PubMed  Google Scholar 

  50. Lankheet N, Kloth J, Gadellaa-van Hooijdonk C et al (2014) Pharmacokinetically guided sunitinib dosing: a feasibility study in patients with advanced solid tumours. Br J Cancer 110:2441–2449. https://doi.org/10.1038/bjc.2014.194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Larson RA, Druker BJ, Guilhot F, O’Brien SG, Riviere GJ, Krahnke T, Gathmann I, Wang Y, for the IRIS (International Randomized Interferon vs STI571) Study Group (2008) Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood 111:4022–4028. https://doi.org/10.1182/blood-2007-10-116475

    Article  CAS  PubMed  Google Scholar 

  52. Demetri GD, Wang Y, Wehrle E, Racine A, Nikolova Z, Blanke CD, Joensuu H, von Mehren M (2009) Imatinib plasma levels are correlated with clinical benefit in patients with unresectable/metastatic gastrointestinal stromal tumors. J Clin Oncol 27:3141–3147. https://doi.org/10.1200/JCO.2008.20.4818

    Article  CAS  PubMed  Google Scholar 

  53. Suttle A, Ball H, Molimard M et al (2014) Relationships between pazopanib exposure and clinical safety and efficacy in patients with advanced renal cell carcinoma. Br J Cancer 111:1909. https://doi.org/10.1038/bjc.2014.503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Houk BE, Bello CL, Poland B, Rosen LS, Demetri GD, Motzer RJ (2009) Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer Chemother Pharmacol 66:357–371. https://doi.org/10.1007/s00280-009-1170-y

    Article  CAS  PubMed  Google Scholar 

  55. Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff J, Barrios CH, Salman P, Gladkov OA, Kavina A, Zarbá JJ, Chen M, McCann L, Pandite L, Roychowdhury DF, Hawkins RE (2010) Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol 28:1061–1068. https://doi.org/10.1200/JCO.2009.23.9764

    Article  CAS  PubMed  Google Scholar 

  56. Food and Drug Administration (2015) Center for Drug Evaluation and Research. Osimertinib clinical pharmacology and biopharmaceutics review. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/208065Orig1s000ClinPharmR.pdf. Accessed 15 January 2019

  57. Food and Drug Administration. Center for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review ibrutinib. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/205552orig1s000ClinPharmR.pdf. Accessed 15 January 2019

  58. Food and Drug Administration (2012) Center for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review afatinib https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/201292Orig1s000ClinPharmR.pdf. Accessed 15 January 2019

  59. Brown K, Comisar C, Witjes H, Maringwa J, de Greef R, Vishwanathan K, Cantarini M, Cox E (2017) Population pharmacokinetics and exposure-response of osimertinib in patients with non-small cell lung cancer. Br J Clin Pharmacol 83:1216–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gotta V, Widmer N, Decosterd LA, Chalandon Y, Heim D, Gregor M, Benz R, Leoncini-Franscini L, Baerlocher GM, Duchosal MA, Csajka C, Buclin T (2014) Clinical usefulness of therapeutic concentration monitoring for imatinib dosage individualization: results from a randomized controlled trial. Cancer Chemother Pharmacol 74:1307–1319. https://doi.org/10.1007/s00280-014-2599-1

    Article  CAS  PubMed  Google Scholar 

  61. Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Mangeshkar P, Wilson KA, Byars A, Sahmoud T, Franz DN (2010) Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 363:1801–1811. https://doi.org/10.1056/NEJMoa1001671

    Article  CAS  PubMed  Google Scholar 

  62. Fox P, Balleine RL, Lee C, Gao B, Balakrishnar B, Menzies AM, Yeap SH, Ali SS, Gebski V, Provan P, Coulter S, Liddle C, Hui R, Kefford R, Lynch J, Wong M, Wilcken N, Gurney H (2016) Dose escalation of tamoxifen in patients with low endoxifen level: evidence for therapeutic drug monitoring - the TADE study. Clin Cancer Res 22:3164–3171. https://doi.org/10.1158/1078-0432.CCR-15-1470

    Article  CAS  PubMed  Google Scholar 

  63. Verheijen RB, Atrafi F, Schellens JHM, Beijnen JH, Huitema ADR, Mathijssen RHJ, Steeghs N (2018) Pharmacokinetic optimization of everolimus dosing in oncology: a randomized crossover trial. Clin Pharmacokinet 57:637–644. https://doi.org/10.1007/s40262-017-0582-9

    Article  CAS  PubMed  Google Scholar 

  64. Wang Y, Chia Y, Nedelman J et al (2009) A therapeutic drug monitoring algorithm for refining the imatinib trough level obtained at different sampling times. Ther Drug Monit 31:579–584. https://doi.org/10.1097/FTD.0b013e3181b2c8cf

    Article  CAS  PubMed  Google Scholar 

  65. Fuchs A, Csajka C, Thoma Y, Buclin T, Widmer N (2013) Benchmarking therapeutic drug monitoring software: a review of available computer tools. Clin Pharmacokinet 52:9–22. https://doi.org/10.1007/s40262-012-0020-y

    Article  CAS  PubMed  Google Scholar 

  66. Study of dose escalation versus no dose escalation of imatinib in metastatic gastrointestinal stromal tumors. http://clinicaltrials.gov/ct2/show/NCT01031628. Accessed 15 January 2019

  67. Evans W, Relling M, Rodman J et al (1998) Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med 338:499–505. https://doi.org/10.1056/NEJM199802193380803

    Article  CAS  PubMed  Google Scholar 

  68. Joerger M, Von Pawel J, Kraff S et al (2016) Open-label, randomized study of individualized, pharmacokinetically (PK)-guided dosing of paclitaxel combined with carboplatin or cisplatin in patients with advanced non-small-cell lung cancer (NSCLC). Ann Oncol 27:1895–1902. https://doi.org/10.1093/annonc/mdw290

    Article  CAS  PubMed  Google Scholar 

  69. Gamelin E, Delva R, Jacob J, Merrouche Y, Raoul JL, Pezet D, Dorval E, Piot G, Morel A, Boisdron-Celle M (2008) Individual fluorouracil dose adjustment based on pharmacokinetic follow-up compared with conventional dosage: results of a multicenter randomized trial of patients with metastatic colorectal cancer. J Clin Oncol 26:2099–2105. https://doi.org/10.1200/JCO.2007.13.3934

    Article  CAS  PubMed  Google Scholar 

  70. Fety R, Rolland F, Barberi-Heyob M, Hardouin A, Campion L, Conroy T, Merlin JL, Rivière A, Perrocheau G, Etienne MC, Milano G (1998) Clinical impact of pharmacokinetically-guided dose adaptation of 5-fluorouracil: results from a multicentric randomized trial in patients with locally advanced head and neck carcinomas. Clin Cancer Res 4:2039–2045

    CAS  PubMed  Google Scholar 

  71. Netherlands Trial Register NTR6866. Therapeutic drug monitoring for oral anti-cancer drugs. http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=6866. Accessed 15 January 2019

  72. De WD, Van ENP, Den HJ et al (2015) Therapeutic drug monitoring to individualize the dosing of pazopanib: a pharmacokinetic feasibility study. Ther Drug Monit 37:331–338. https://doi.org/10.1097/FTD.0000000000000141

    Article  CAS  Google Scholar 

  73. Partridge AH, Wang PS, Winer EP, Avorn J (2003) Nonadherence to adjuvant tamoxifen therapy in women with primary breast cancer. J Clin Oncol 21:602–606. https://doi.org/10.1200/JCO.2003.07.071

    Article  CAS  PubMed  Google Scholar 

  74. Hussaarts KGAM, Veerman GDM, Jansman FGA, van Gelder T, Mathijssen RHJ, van Leeuwen RWF (2019) Clinically relevant drug interactions with multikinase inhibitors: a review. Ther Adv Med Oncol 11:1–34. https://doi.org/10.1177/1758835918818347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of this review were performed by SG, AH, and NS; SG wrote the manuscript; RM, JB, AH, and NS critically reviewed the manuscript.

Corresponding author

Correspondence to Stefanie L. Groenland.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Groenland, S.L., Mathijssen, R.H.J., Beijnen, J.H. et al. Individualized dosing of oral targeted therapies in oncology is crucial in the era of precision medicine. Eur J Clin Pharmacol 75, 1309–1318 (2019). https://doi.org/10.1007/s00228-019-02704-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-019-02704-2

Keywords

Navigation