[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A review on natural products as wood protectant

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Traditional wood protection methods employ chemicals that are considered toxic and can adversely affect human health and the environment. Fortunately, serious efforts are being made globally to develop alternative protection methods based on natural products with little or no toxicity, but the progress in implementation of the technologies has been slow because of certain limitations, including discrepancies between laboratory and field performance of natural products, variability in their efficacy related to exposure/environmental conditions, and legislation difficulties due to disagreements globally on setting standards defining the quality of their performance and use. The focus of this review is to present information on the natural compounds that have shown promise for wood protection, and the information is presented under defined interactive categories. In closing, some thoughts are presented on potential use of rapidly evolving technologies, such as nano- and gene-technologies that can lead to significant advances, particularly from the consideration of specificity of natural products and their economic value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson AB, Brewer RJ, Nicholls GA (1961) Bonding particleboards with bark extracts. For Prod J 11:226–227

    CAS  Google Scholar 

  • Backa S, Gierer J, Reitberger T, Nilsson T (1993) Hydroxyl radical activity associated with the growth of white rot fungi. Holzforschung 47:181–187

    Article  CAS  Google Scholar 

  • Bamber RK, Fukazawa K (1985) Sapwood and heartwood: a review. For Abstr 46:567–580

    Google Scholar 

  • Bevan CWL, Ekong DEW, Taylor DAH (1965) Extractives from West African members of the family Mallaceae. Nature 206(4991):1323–1325

    Article  CAS  Google Scholar 

  • Brandt TG (1953) Mangrove tannin formaldehyde resins as hot press plywood adhesives. Tectona XLII:137–150

    Google Scholar 

  • Briscoe PA, Williams GR, Anderson DG, Gadd GM (1990) Microbial tolerance and biotoxification of organic and organometallic biocides. The international research group on wood protection. Document no. IRG/WP 1464, Stockholm

  • Bruce A, Highley TL (1991) Control of growth of wood decay basidiomycetes by Trichoderma spp. and other potentially antagonistic fungi. For Prod J 41:63–67

    CAS  Google Scholar 

  • Bultman JD, Gilbertson RK, Adaskaveg J, Amburgey TL, Parikh SV, Bailey CA (1991) The efficacy of guayule resin as a pesticide. Bioresour Technol 35:1997–2001

    Article  Google Scholar 

  • Cao J, Kamdem KD (2005) Microdistribution of copper in copper-ethanolamine (Cu-EA) treated southern yellow pine (Pinus spp.) related to density distribution. Holzforschung 59:82–89

    Article  CAS  Google Scholar 

  • Chang S-T, Cheng S–S, Wang S-Y (2001) Antitermitic activity of essential oils and components from Taiwania (Taiwania cryptomerioides). J Chem Ecol 27:717–724

    Article  PubMed  CAS  Google Scholar 

  • Chang S-T, Wang S-Y, Kuo Y-H (2003) Resource and bioactive substances from Taiwania (Taiwania cryptomeriodes). J Wood Sci 49:1–4

    Article  CAS  Google Scholar 

  • Cheng S–S, Lin H-Y, Chang S-T (2005) Chemical composition and antifungal activity of essential oils from different tissues of Japanese cedar (Cryptomeria japonica). J Agric Food Chem 53:614–619

    Article  PubMed  CAS  Google Scholar 

  • Cheng S–S, Liu J-Y, Hsui YR, Chang S-T (2006) Chemical polymerization and antifungal activity of essential oils from leaves of different provenances of indigenous cinnamon (Cinnamomum osmophoeum). Bioresour Technol 97:306–312

    Article  PubMed  Google Scholar 

  • Cheng S–S, Liu J-Y, Cheng E-H, Chang S-T (2008) Antifungal activity of cinnamaldehyde and eugenol congeners against wood rot fungi. Bioresour Technol 99:5145–5149

    Article  PubMed  CAS  Google Scholar 

  • Chittenden C, Singh T (2009) In vitro evaluation of combination of Trichoderma harzianum and chitosan for the control of sapstain fungi. Biol Control 50:262–266

    Article  Google Scholar 

  • Chittenden C, Kreber B, MC Dowell N, Singh T (2004) In vitro studies on the effect of chitosan on mycelium and spore germination of decay fungi, moulds and staining fungi. The international research group on wood protection. Document no IRG/WP 04-10507, Stockholm, Sweden

  • Chow S (1982) Method of treating wood to prevent stain and decay. US patent no. 4413023

  • Clausen CA (2007) Nanotechnology: implications for the wood preservation industry. The international research group on wood protection. Document no. IRG/WP 07-30415. Stockholm

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170

    Article  PubMed  CAS  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    PubMed  CAS  Google Scholar 

  • Duke JA (1985) Handbook of medicinal herbs. CRS Press, Inc., Boca Raton

    Google Scholar 

  • Eikenes M, Alfredsen G, Christensen B, Militz H, Solheim H (2005a) Comparison of chitosan with different molecular weights as possible wood preservative. J Wood Sci 51:387–394

    Article  CAS  Google Scholar 

  • Eikenes M, Alfredsen G, Larnoy E, Militz H, Kreber B, Chittenden C (2005b) Chitosan for wood protection—state of the art. The international research group on wood protection. Document no. IRG/WP 05-3037. Stockholm

  • Evans P (2003) Emerging technologies in wood protection. For Prod J 53:14–22

    Google Scholar 

  • Freitag M, Morrell JJ, Bruce A (1991) Biological protection of wood: status and prospects. Biodeterior Abstr 5:1–13

    Google Scholar 

  • French JRJ, Robinson PJ, Yazaki Y, Hillis WE (1979) Bioassays of extracts from white cypress pine (Callitris columellaris F Muell) against subterranean termites. Holzforschung 33:144–148

    Article  Google Scholar 

  • Geissman TA (1963) Flavonoid compounds, tannins, lignins and related compounds. In: Florkin M, Stotz EH (eds) Pyrrole pigments, isoprenoid compounds and phenolic plant constituents, vol 9. Elsevier, New York, p 265

    Google Scholar 

  • Glassel D, Mellema GE (2006) Protection of construction materials from pests. US patent no. US 200601343 41A1, filed 17 Dec 2004

  • Gripenberg J (1949) The constituents of the wood of Thuja occidentalis L. Acta Chem Scand 3:782

    Article  CAS  Google Scholar 

  • Hadwiger LA, Loschke DC (1981) Molecular communication in host-parasite interactions: hexosamine polymers (chitosan) as regulator compounds in race-specific and other interactions. Phytopathology 71:756–762

    Article  CAS  Google Scholar 

  • Hall RB, Leonard JA, Nicholls GN (1960) Bonding particle board with bark extracts. For Prod J 10:263–272

    CAS  Google Scholar 

  • Hammel KE, Kapich AN, Jensen KA, Ryan ZC (2002) Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb Technol 30:445–453

    Article  CAS  Google Scholar 

  • Hillis WE (1987) Heartwood and tree exudates. Springer, Berlin

    Book  Google Scholar 

  • Hirano S, Nagao N (1989) Effects of chitosan, pectic acid, lysozyme and chitinase on the growth of several phytopathogens. Agric Biol Chem 53:3065–3066

    Article  CAS  Google Scholar 

  • Hirano T, Enoki A, Tanaka H (2000) Immunogold labelling of an extracellular substance producing hydroxyl radicals in wood degraded by brown rot fungus Tyromyces palustris. J Wood Sci 46:45–51

    Article  CAS  Google Scholar 

  • Hsu F-L, Yen T-B, Chang H-T, Chang S-T (2007) Antifungal activity and synergistic effect of cinnamaldehyde combined with antioxidants against wood decay fungi. The international research group on wood protection. Document no. IRG/WP 07-30445. Stockholm

  • Jacoby HM, Freeman MH (2008) The federal insecticide, fungicide, and rodenticide act and its impact on the development of wood preservatives: registration requirements. In: Schultz TP, Militz H, Freeman MH, Goodell B, Nicholas DD (eds) Development of commercial wood preservatives; efficacy, environmental and health issues. American Chemical Society, Washington, pp 510–523

    Chapter  Google Scholar 

  • Jun Z, Wenjin Z (2009) Micronized wood preservative formulations comprising copper and zinc. United State patent 7632567. p 25

  • Kartal SN, Hwang W-J, Imamura Y, Sekine Y (2006) Effect of essential oil compounds and plant extracts on decay and termite resistance of wood. Holz Roh Werkst 64:455–461

    Article  CAS  Google Scholar 

  • Kartal SN, Yoshimura T, Imamura Y (2009) Modification of wood with Si compounds to limit boron leaching from treated wood and to increase termite and decay resistance. Int Biodeterior Biodegrad 63:187–190

    Article  CAS  Google Scholar 

  • Kawamura F, Ohara S (2005) Antifungal activity of iridoid glycosides from the heartwood of Gmelina arborea. Holzforschung 59:153–155

    Article  CAS  Google Scholar 

  • Kawamura F, Ohara S, Nishida A (2004) Antifungal activity of constituents from heartwood of Gmelina arborea. Part 1. Sensitive antifungal assay against basidiomycetes. Holzforschung 58:189–192

    Article  CAS  Google Scholar 

  • Kim YS, Singh AP, Wong AHH, Eom T-J, Lee KH (2006) Micromorphological and chemical characteristic of Cengal (Neobalanocarpus heimii) heartwood decayed by soft rot fungi. J Wood Sci Technol 34:68–77

    Google Scholar 

  • King FE, Grundon MF (1949) Chlorophorin, a constituent of Iroko the timber of Chlorophora excelsa. Nature 162:564–565

    Google Scholar 

  • Kleist G, Schmitt U (1999) Evidence of accessory compounds in vessel walls of Sapelli heartwood (Entrandrophragma cylindricum) obtained by transmission electron microscopy. Holz Roh Werkst 57:93–95

    Article  CAS  Google Scholar 

  • Kobayashi T, Furukawa I (1996) Impregnation of chitosan-metal salt into full sized timber. J Antibact Antifun Ag Jpn 24:191–193

    Google Scholar 

  • Laks PE (1989) Wood preservation—looking ahead. Construct Specif 42:60–69

    Google Scholar 

  • Laks PE (1991) Method for treating wood against fungal attacks. US patent no. 4988545

  • Laks PE, McKaig PA, Hemingway RW (1988) Flavanoid biocides: wood preservatives based on condensed tannins. Holzforschung 42:299–306

    Article  CAS  Google Scholar 

  • Lambert RJW, Skandamis PN, Coote PJ, Nychas G (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 91:453–462

    Article  PubMed  CAS  Google Scholar 

  • Leach RM, Zhang J (2004) Micronized wood preservative formulations comprising metal compounds and organic biocides. World patent 2004091875

  • Lebow ST, Williams RS, Lebow PK (2003) Effects of simulated rainfall and weathering on release of preservative elements from CCA treated wood. Environ Sci Technol 37:4077–4082

    Article  PubMed  CAS  Google Scholar 

  • Leuba JL, Stössel P (1986) Chitosan and other polyamines: antifungal activity and interaction with biological membranes. In: Gooday GW (ed) Chitin in nature and technology. Plenum Press, New York, pp 215–222

    Chapter  Google Scholar 

  • Li S, Freitag C, Morrell JJ (2008) Preventing fungal attack of freshly sawn lumber using cinnamon extracts. For Prod J 58:71–81

    Google Scholar 

  • Li MH, Ung PMU, Zajkowski J, Tsodikova SG, Sherman DH (2009) Automated genome mining for natural products. BMC bioinformatics 10:185. http://www.biomedcentral.com

  • Lin LH, Chen KM (2006) Surface activity and water repellency properties of cleavable-modified silicone surfactants. Colloid Surface A 275:99–106

    Article  CAS  Google Scholar 

  • Lin CY, Wu CL, Chang ST (2007) Evaluating the potency of cinnamaldehyde as a natural wood preservative. The international research group on wood protection. Document no. IRG/WP 07-30444 Stockholm

  • Lis-Balchin M, Hart S (1999) Studies on the mode of action of the essential oil of lavender (Lavandula angustifolia P. Miller). Phytother Res 13:540–542

    Article  PubMed  CAS  Google Scholar 

  • Lotz RW (1993) Wood preservation system including halogenated tannin extracts. US patent no. 5270083

  • Lotz RW, Hollaway DF (1988) Wood preservation. US patent no. 4732817

  • Lyon F, Thevenon M-F, Imamura Y, Gril J, Pizzi A (2007) Development of boron/linseed oil combination treatment as a low-toxic wood protection: evaluation of boron fixation and resistance to termites according to Japanese and European standards. The international research group on wood protection. Document no. IRG/WP 07-30448. Stockholm

  • Mabicka A, Dumarcay S, Rouhier N, Linder M, Jacquot JP, Gerardin P, Gelhaye E (2005) Synergistic wood preservatives involving EDTA, irganox 1076 and 2-hydroxypyridine-N-oxide. Int Biodeterior Biodegrad 55:203–211

    Article  CAS  Google Scholar 

  • Macias FA, Torres A, Maya CC, Fernandez B (2005) Natural biocides from citrus waste as new wood preservatives. Fourth World Congress on Allelopathy, 21–26 Aug 2005 Charles Sturt University, Wagga

  • Maoz M, Morrell JJ (2004) Ability of chitosan to limit wood decay under laboratory conditions. The international research group on wood protection. Document no. IRG/WP 04-30339. Stockholm

  • Maoz M, Weitz I, Blumenfeil M, Freitag C, Morrell JJ (2007) Antifungal activity of plant derived extracts against G. trabeum. The international research group on wood protection. Document no. IRG/WP 07-30433. Stockholm

  • Maoz M, Freitag C, Morrell JJ (2009) Potential synergy between natural product extracts for limiting fungal decay. The international research group on wood protection. Document no. IRG/WP 09-30495. Stockholm

  • Mason TL, Wasserman BP (1987) Inactivation of red beet beta-glucan synthase by native and oxidized phenolic compounds. Phytochemistry 26:2197–2202

    Article  CAS  Google Scholar 

  • Matan N, Matan N (2007) Effect of cinnamon oil and clove oil against major fungi identified from surface of rubberwood (Hevea brasiliensis). The International research group on wood protection. Document no. IRG/WP 07-30446. Stockholm

  • Matan N, Matan N (2008) Antifungal activities of anise oil, lime oil, and tangerine oil against moulds on rubberwood (Hevea brasiliensis). Int Biodeterior Biodegrad 62:75–78

    Article  CAS  Google Scholar 

  • Matsunaga H, Kiguchi M, Evans PD (2009) Microdistribution of copper-carbonate and iron oxide nanoparticles in treated wood. J Nanopart Res 11:1087–1098

    Article  CAS  Google Scholar 

  • Mitchell R, Sleeter TD (1980) Protecting wood from wood degrading organisms. US patent no. 4220688

  • Mourant D, Yang DQ, Lu X, Roy C (2005) Antifungal properties of the pyroligneous liquors from the pyrolysis of softwood bark. Wood Fiber Sci 37:542–548

    CAS  Google Scholar 

  • Nakano H, Nakajima E, Hiradate S, Fujii Y, Yamada K, Shigemori H, Hasegawa K (2004) Growth inhibitory alkaloids from Mesquite (Prosopis juliflora (Swartz) D.C. leaves. Phytochemistry 65:587–591

    Article  PubMed  CAS  Google Scholar 

  • Nakayama FS, Vinyard SM, Chow P, Bajwa DS, Youngquist JA, Muehl JH, Krzysik AM (2001) Guayule as a wood preservative. Ind Crops Prod 14:105–111

    Article  CAS  Google Scholar 

  • Nemli G, Gezer ED, Yildiz S, Temiz A, Aydin A (2006) Evaluation of the mechanical, physical properties and decay resistance of particleboard made from particles impregnated with Pinus brutia bark extractives. Bioresour Technol 97:2059–2064

    Article  PubMed  CAS  Google Scholar 

  • Nilsson T, Singh AP, Daniel G (1992) Ultrastructure of the attack of Eusideroxylon zwageri wood by tunnelling bacteria. Holzforschung 46:361–367

    Article  CAS  Google Scholar 

  • Okeke B, Steiman F, Seigle-Muraandi F, Benoit-Guyod JL (1992) Production of fungicides from fungal metabolites: a new perspective in the biological control of Pyricularis oryzae. Med Fac Landbouww Univ Gent 57:403–410

    CAS  Google Scholar 

  • Onsøyen E, Skauggrud O (1990) Metal recovery using chitosan. J Chem Technol Biotechnol 49:395–404

    Article  PubMed  Google Scholar 

  • Onuorah EO (2000) The wood preservative potentials of heartwood extracts of Milicia excelsa and Erythrophleum suaveolens. Bioresour Technol 75:171–173

    Article  CAS  Google Scholar 

  • Panov D, Terziev N (2009) Study on some alkoxysilanes used for hydrophobation and protection of wood against decay. Int Biodeterior Biodegrad 63:456–461

    Article  CAS  Google Scholar 

  • Passialis CN, Voulgaridis EV (1999) Water repellent efficiency of organic solvent extractives from Aleppo pine leaves and bark applied to wood. Holzforschung 53:151–155

    Article  CAS  Google Scholar 

  • Pinto E, Pina-vaz C, Salgueiro L, Concalves MJ, de Oliveira C, Cavaleiro C, Palmeira A, Rodrigues A, de Oliveira JM (2006) Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. J Med Microbiol 55:1367–1373

    Article  PubMed  CAS  Google Scholar 

  • Plomely KF (1966) Tannin-formaldehyde adhesives. CSIRO division of forestry products. Technical paper no. 46. Melbourne, Australia, pp 16–19

  • Preston AF (2000) Wood preservation: trends of today that will influence the industry tomorrow. For Prod J 50:13–19

    Google Scholar 

  • Rabea EI, Badawy ME-T, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: application and mode of action. Biomacromolecules 4:1457–1465

    Article  PubMed  CAS  Google Scholar 

  • Ratto M, Ritschkoff AC, Viikari L (2004) Enzymatic polymerized phenolic compounds as wood preservatives. Holzforschung 58:440–445

    Article  Google Scholar 

  • Rickard C, Singh T, Singh A, Newman R (2009) Discovering anti-fungal agents in New Zealand native plants for use in wood protection. The international research group on wood protection. Document no. IRG/WP 09-10692. Stockholm

  • Ruddick JNR (2008) Biocide depletion: chemical, physical, and photodegradation. In: Schultz TP, Militz H, Freeman MH, Goodell B, Nicholas DD (eds) Development of commercial wood preservatives; efficacy, environmental and health issues. American Chemical Society, Washington, pp 285–311

    Chapter  Google Scholar 

  • Scheffer TC, Cowling E (1966) Natural resistance of wood to microbial deterioration. Annu Rev Phytopathol 4:147–170

    Article  CAS  Google Scholar 

  • Schultz TP, Nicholas DD (2000) Natural durable heartwood: evidence for a proposed dual defensive function of the extractives. Phytochemistry 54:47–52

    Article  PubMed  CAS  Google Scholar 

  • Schultz TP, Nicholas DD (2002) Development of environmentally-benign wood preservatives based on the combination of organic biocides with antioxidants and metal chelators. Phytochemistry 61:555–560

    Article  PubMed  CAS  Google Scholar 

  • Schultz TP, Nicholas DD (2007) Totally organic wood preservative for exterior residential applications. In: Barnes HM (ed) Wood protection 2006. Forest Products Society, Madison, pp 289–294

    Google Scholar 

  • Schultz TP, Nicholas DD (2008) Improving the performance of organic biocides by using economical and benign additives. In: Schultz TP, Militz H, Freeman MH, Goodell B, Nicholas DD (eds) Development of commercial wood preservatives; efficacy, environmental and health issues. American Chemical Society, Washington, pp 272–284

    Chapter  Google Scholar 

  • Schultz TP, Nicholas DD, Kelly S (2006) A nonleachable waterborne composition of resin acids and wood preserving organic biocides. US Provisional patent 60/743, 669, filed 22 March 2006

  • Scown DK, Creffield JM, Hart RS (2009) Laboratory study on the termiticidal efficacy of Eremophilone oil. The international research group on wood protection. Document no. IRG/WP 00-30497. Stockholm

  • Sen S, Tascioglu C, Tirak K (2009) Fixation, leachibiliy and decay resistance of wood treated with some commercial extracts and wood preservative salts. Int Biodeterior Biodegrad 63:135–141

    Article  CAS  Google Scholar 

  • Si CL, Xu J, Kim JK, Bae YA, Liu PT, Liu Z (2011) Antioxidant properties and structural analysis of phenolic glucosides from bark of Populus ussuriensis Kom. Wood Sci Technol 45:5–13

    Article  CAS  Google Scholar 

  • Singh T, Chittenden C (2008a) Antifungal activity of essential oils against common wood degrading/decaying fungi. The international research group on wood protection. Document no. IRG/WP 08-30465. Stockholm

  • Singh T, Chittenden C (2008b) In vitro antifungal activity of chilli extracts in combination with Lactobacillus casei against common sapstain fungi. Int Biodeterior Biodegrad 62:364–367

    Article  CAS  Google Scholar 

  • Singh T, Chittenden C, Singh AP, Franich R (2008a) Chitosan as a potential wood preservative. Wood Processing Newsletter, Issue no. 42, Scion, Rotorua

  • Singh T, Vesentini D, Singh AP, Daniel G (2008b) Effect of chitosan on physiological, morphological and ultrastructural characteristics of wood degrading fungi. Int Biodeterior Biodegrad 62:116–124

    Article  CAS  Google Scholar 

  • Sirmah P, Iaych K, Poaty B, Dumarcay S, Gerardin P (2009a) Effect of extractives on durability of Prosopis juliflora heartwood. The international research group on wood protection. Document no. IRG/WP 09-30518. Stockholm

  • Sirmah P, Dumarcay S, Masson E, Gerardin P (2009b) Unusual amount of (-)-mesquitol from the heartwood of Prosopis juliflora. Nat Prod Res 23:183–189

    Article  PubMed  CAS  Google Scholar 

  • Skjak-Braek G, Anthonsen T, Sandford P (1989) Chitin and chitosan. Elsevier Applied Science, London

    Google Scholar 

  • Stirling R, Daniels CR, Clark JE, Morris PI (2007) Methods for determining the role of extracts in the natural durability of Western red cedar heartwood. The international research group on wood protection. Document no. IRG/WP 07-20356. Stockholm

  • Stirling R, Drummond J, Zhang J, Ziobro RJ (2008) Micro-distribution of micronized copper in southern pine. The international research group on wood protection. Document no. IRG/WP 08-30479. Stockholm

  • Suzuki T, Doi S, Yamakawa M, Yamamoto K, Watanake T, Funaki M (1997) Recovery of wood preservatives from wood pyrolysis tar by solvent extraction. Holzforschung 51:215–218

    Article  Google Scholar 

  • Syafii W, Samejima M, Yoshimoto T (1987) The role of extractives in decay resistance of ulin wood (Eusideroxylon zwageri). Bull Tokyo Univ For 77:1–8

    Google Scholar 

  • Taylor AM, Gartner BL, Morrell JJ (2002) Heartwood formation and natural durability—a review. Wood Fiber Sci 34:587–611

    CAS  Google Scholar 

  • Taylor AM, Gartner BL, Morrell JJ, Tsunoda K (2006) Effects of heartwood extractive fractions of Thuja plicata and Chamaecyparis nootkatensis on wood degradation by termites or fungi. J Wood Sci 52:147–153

    Article  CAS  Google Scholar 

  • Temiz A, Alfredsen G, Eikenes M, Terziev N (2008) Decay resistance of wood treated with boric acid and tall oil derivates. Bioresour Technol 99:2102–2106

    Article  PubMed  CAS  Google Scholar 

  • Thobunluepop P, Pawelzik E, Jatisatienr C, Vearasilp S (2009) In vitro screening of the antifungal activity of plant extracts as fungicide against rice seed born fungi. Acta Hortic 837:223–228

    Google Scholar 

  • Torr KM, Chittenden C, Franich RA, Kreber B (2005) Advances in understanding bioactivity of chitosan and chitosan oligomers against selected wood-inhabiting fungi. Holzforschung 59:559–567

    Article  CAS  Google Scholar 

  • Torr KM, Singh AP, Franich RA (2006) Improving stiffness of lignocellulosics through cell wall modification with chitosan melamine co-polymers. NZ J For Sci 36:87–98

    CAS  Google Scholar 

  • Van Lanen SG, Shen B (2006) Microbial genomics for the improvement of natural product discovery. Curr Op Microbiol 9:252–260

    Article  Google Scholar 

  • Vesentini D, Steward D, Singh AP, Ball R, Daniel G, Franich R (2007) Chitosan-mediated changes in cell wall composition, morphology and ultrastructure in two wood inhabiting fungi. Mycol Res 111:875–890

    Article  PubMed  CAS  Google Scholar 

  • Voda K, Boh B, Vrtacnik M, Pohleven M (2003) Effect of the antifungal activity of oxygenated aromatic essential oil compounds on the white-rot Trametes versicolor and the brown-rot Coniophora puteana. Int Biodeterior Biodegrad 51:51–59

    Article  CAS  Google Scholar 

  • Wallace DF, Dickinson DJ (2006) The bacterial transformation of organic biocides: a common mechanism? The international research group on wood protection. Document no. IRG/WP/06-10585. Stockholm

  • Wan H, Wang XM, Yang DQ (2007) Utilizing eastern white cedar to improve the resistance of strand boards to mould and decay fungi. For Prod J 57:54–59

    Google Scholar 

  • Wang S-Y, Chen P-F, Chang ST (2005) Antifungal activities of essential oils and their constituents from indigenous cinnamon (Cinnamomum osmophloeum) leaves against wood decay fungi. Bioresour Technol 96:813–818

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Mihara R, Mitsunaga T, Yoshimura T (2005) Termite repellent sesquiterpenoids from Callitris glaucophylla heartwood. J Wood Sci 51:514–519

    Article  CAS  Google Scholar 

  • Weigenand O, Humar M, Daniel G, Militz H, Mai C (2008) Decay resistance of wood treated with amino-silicone compounds. Holzforschung 62:112–118

    Article  CAS  Google Scholar 

  • Yang DQ (2009) Potential utilization of plant and fungal extracts for wood protection. For Prod J 59:97–103

    Google Scholar 

  • Yang VW, Clausen CA (2007) Antifungal effect of essential oils on Southern yellow pine. Int Biodeterior Biodegrad 59:302–306

    Article  CAS  Google Scholar 

  • Yang DQ, Wang XM, Shen J, Wan H (2004) Antifungal properties of barks of various wood species. For Prod J 54:37–39

    Google Scholar 

  • Yatagai M, Takahashi T (1980) Tropical wood extractives’ effects on durability, paint curing time and pulp sheet resin spotting. Wood Sci 12:176–182

    CAS  Google Scholar 

  • Zhang XF, Thuong PT, Min BS, Ngoc TM, Hung TM, Lee IS, Na MK, Seong YH, Song KS, Bae KH (2006) Phenolic glycosides with antioxidant activity from the stem bark of Populus davidiana. J Nat Prod 69:1370–1373

    Article  PubMed  CAS  Google Scholar 

  • Zhou F, Ji B, Zhang H, Jiang H, Yang Z, Li J, Li J, Ren Y, Yan W (2007) Synergistic effect of thymol and carvacrol combined with chelators and organic acids against Salmonella typhimurium. J Food Prot 70:1704–1709

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tripti Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, T., Singh, A.P. A review on natural products as wood protectant. Wood Sci Technol 46, 851–870 (2012). https://doi.org/10.1007/s00226-011-0448-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-011-0448-5

Keywords

Navigation