[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Monadic second-order definable text languages

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Atext is a word together with a (additional) linear ordering. Each text has a generic tree representation, called itsshape. Texts are considered in a logical and in an algebraic framework. It is proved that, for texts of bounded primitivity, the class of monadic second-order definable text languages coincides with both the class of recognizable text languages and the class of text languages generated by right-linear text grammars. In particular it is demonstrated that the construction of the shape of a text can be formalized in terms of our monadic second-order logic. This approach can be extended to the case of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Technical Report UU-CS-1996-02, Department of Computer Science, Utrecht University, Utrecht, 1996.

    Google Scholar 

  2. J.R. Büchi, Weak second-order arithmetic and finite automata,Z. Math. Logik Grundlag. Math. 6 (1960), 66–92.

    Article  MATH  Google Scholar 

  3. P.M. Cohn,Universal Algebra, Harper & Row, New York, 1965.

    MATH  Google Scholar 

  4. B. Courcelle, An axiomatic definition of context-free rewriting and its application to NLC graphgrammars,Theoret. Comput. Sci. 55 (1987), 141–181.

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Courcelle, The monadic second-order logic of graphs, I: recognizable sets of finite graphs,Inform. Comput. 85 (1990), 12–75.

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Courcelle, The monadic second-order logic of graphs, V: on closing the gap between definability and recognizability,Theoret. Comput. Sci. 80 (1991), 153–202.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Courcelle, Monadic second-order definable graph transductions: a survey,Theoret. Comput. Sci. 126 (1994), 53–75.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Courcelle, The monadic second-order logic of graphs, X: linear orderings,Theoret. Comput. Sci. 160 (1996), 87–143.

    Article  MathSciNet  Google Scholar 

  9. J. Doner, Tree acceptors and some of their applications,J. Comput. System Sci. 4 (1970), 406–451.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Ehrenfeucht and G. Rozenberg, Theory of 2-structures, I and II,Theoret. Comput. Sci. 70 (1990), 277–342.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Ehrenfeucht and G. Rozenberg, T-functions, T-structures, and texts,Theoret. Comput. Sci. 116 (1993), 227–290.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Ehrenfeucht, P. ten Pas, and G. Rozenberg, Combinatorial properties of texts,RAIRO Inform. Théor. 27 (1993), 433–464.

    MathSciNet  MATH  Google Scholar 

  13. A. Ehrenfeucht, P. ten Pas, and G. Rozenberg, Context-free text grammars,Acta Inform. 31 (1994), 161–206.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Engelfriet, A characterization of context-free NCE graph languages by monadic second-order logic on trees. In:Graph Grammars and Their Application to Computer Science (H. Ehrig, H.-J. Kreowski, and G. Rozenberg, eds.). Lecture Notes in Computer Science, Vol. 532, Springer-Verlag, Berlin, 1991, pp. 311–327.

    Chapter  Google Scholar 

  15. J. Engelfriet, A regular characterization of graph languages definable in monadic second-order logic,Theoret. Comput. Sci. 88 (1991), 139–150.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Engelfriet, T. Harju, A. Proskurowski, and G. Rozenberg, Characterization and complexity of uniformly nonprimitive labeled 2-structures,Theoret. Comput. Sci. 154 (1996), 247–282.

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Gecseg and M. Steinby,Tree Automata, Akademiai Kiado, Budapest, 1984.

    MATH  Google Scholar 

  18. H.J. Hoogeboom and P. ten Pas, MSO definable text languages. In:Mathematical Foundations of Computer Science (I. Prívara, B. Rovan, and P. Ružička, eds.). Lecture Notes in Computer Science, Vol. 841, Springer-Verlag, Berlin, 1994, pp. 413–422.

    Google Scholar 

  19. H.J. Hoogeboom and P. ten Pas, Text languages in an algebraic framework,Fund. Inform. 25 (1995), 353–380.

    MathSciNet  Google Scholar 

  20. J. Mezei and J.B. Wright, Algebraic automata and context-free sets,Inform. and Control 11 (1967), 3–29.

    Article  MathSciNet  MATH  Google Scholar 

  21. R.H. Möhring and F.J. Radermacher, Substitution decomposition for discrete structures and connections with combinatorial optimization,Ann. Discrete Math. 19 (1984), 257–356.

    Google Scholar 

  22. P. ten Pas, Texts and Trees, Ph.D. Thesis, Leiden University, May 1995.

  23. A. Potthoff and W. Thomas, Regular tree languages without unary symbols are star-free. In:Fundamentals of Computation Theory (Z. Ésik, ed.). Lecture Notes in Computer Science, Vol. 710, Springer-Verlag, Berlin, 1993, pp. 396–405.

    Chapter  Google Scholar 

  24. J.W. Thatcher and J.B. Wright, Generalized finite automata theory with an application to a decision problem of second-order logic,Math. System Theory 2 (1968), 57–82.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by the EBRA Working Group ASMICS 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoogeboom, H.J., ten Pas, P. Monadic second-order definable text languages. Theory of Computing Systems 30, 335–354 (1997). https://doi.org/10.1007/BF02679464

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02679464

Keywords