Abstract
For any positive number k and for any hypergraph H with vertex set V(H) and edge set \(\mathrm {E}(H)\subseteq 2^{\mathrm {V}(H)}\), we call \(U\subseteq \mathrm {V}(H)\) a k-antimatching of H if for every matching \(F\subseteq \mathrm {E}(H)\) it holds rankA[U,F] ≤ k, where A is the V(H) ×E(H) (0,1) matrix whose (v,e)-entry is 1 if and only if v ∈ e. Consider a finite poset P with a unique maximal element and having a rooted tree as its Hasse diagram. Let H be the hypergraph with V(H) = P and with E(H) being the set of all down-sets of P. Let μ be a submodular function defined on 2V(H) such that μ(V(H)) ≥ d + (ℓ − 1)c for a positive integer ℓ and two nonnegative reals d and c. For any nonnegative reals d1,…,dℓ with \({\sum }_{i=1}^{\ell } d_{i}=d\), we show that either there is a matching {D1,…,Dℓ} of H with μ(Di) ≥ di for all i, or there is a 1-antimatching C of H such that μ(C) ≥ c. We establish a countable version of this result by assuming further that μ satisfies the weak Fatou property and reverse Fatou property. We propose a conjecture on a possible extension of our result from 1-antimatching to general k-antimatchings.
Similar content being viewed by others
Change history
28 November 2022
A Correction to this paper has been published: https://doi.org/10.1007/s00224-022-10099-4
References
Dellacherie, C., Meyer, P.-A.: Probabilités Et Potentiel, p. 291. Hermann. Chapitres I à IV, Édition entièrement refondue, Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. XV, Actualités Scientifiques et Industrielles, No. 1372 (1975)
Wu, Y., Zhu, Y.: Weighted rooted trees: fat or tall? In: Fernau, H. (ed.) Computer Science—Theory and Applications. https://doi.org/10.1007/978-3-030-50026-9_30, pp 406–418. Springer (2020)
Albin, N., Clemens, J., Fernando, N., Poggi-Corradini, P.: Blocking duality for p-modulus on networks and applications. Ann. Mat. Pura Appl. (4) 198(3), 973–999 (2019). https://doi.org/10.1007/s10231-018-0806-0https://doi.org/10.1007/s10231-018-0806-0
Artstein-Avidan, S., Milman, V.: The concept of duality in convex analysis, and the characterization of the Legendre transform. Ann. Math. (2) 169(2), 661–674 (2009). https://doi.org/10.4007/annals.2009.169.661https://doi.org/10.4007/annals.2009.169.661
Luenberger, D. G.: A double look at duality. IEEE Trans. Autom. Control 37(10), 1474–1482 (1992). https://doi.org/10.1109/9.256366
Tao, T.: Higher Order Fourier Analysis. Graduate Studies in Mathematics, vol. 142, p. 187 American Mathematical Society. https://doi.org/10.1090/gsm/142 (2012)
Gascuel, O., Steel, M.: A Darwinian uncertainty principle. Syst. Biol. 69(3), 521–529 (2020). https://doi.org/10.1093/sysbio/syz054
Meerkoetter, K.: Uncertainty relation for multidimensional discrete signals. Multidimens. Syst. Signal Process. 28(2), 389–406 (2017). https://doi.org/10.1007/s11045-015-0346-3
Ram Murty, M.: Some remarks on the discrete uncertainty principle. In: Highly Composite: Papers in Number Theory. Ramanujan Mathematical Society Lecture Notes Series. https://mast.queensu.ca/~murty/BaluConference.pdf, vol. 23, pp 77–85. Ramanujan Mathematical Society (2016)
Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935). https://doi.org/10.1007/978-0-8176-4842-8_3
Dilworth, R. P.: A decomposition theorem for partially ordered sets. Ann. Math. 51(1), 161–166 (1950). https://doi.org/10.2307/1969503
Mirsky, L.: A dual of Dilworth’s decomposition theorem. Amer. Math. Mon. 78, 876–877 (1971). https://doi.org/10.2307/2316481
Gallai, T., Milgram, A. N.: Verallgemeinerung eines graphentheoretischen Satzes von Rédei. Acta Sci. Math. (Szeged) 21, 181–186 (1960)
Gallai, T.: On Directed Paths and Circuits. In: Theory of Graphs (Proc. Colloq., Tihany, 1966), pp 115–118. Academic Press (1968)
Roy, B.: Nombre chromatique et plus longs chemins d’un graphe. Rev. Franç. Inform. Rech. Opér. 1(5), 129–132 (1967)
Lovász, L.: A characterization of perfect graphs. J. Combin. Theory Ser. B 13, 95–98 (1972). https://doi.org/10.1016/0095-8956(72)90045-7
Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511809088 (2002)
Malvestuto, F.M.: A new notion of convexity in digraphs with an application to Bayesian networks. Discrete Math. Algorithms Appl. 9 (2), 1750016–22 (2017). https://doi.org/10.1142/S1793830917500161https://doi.org/10.1142/S1793830917500161
Akin, E.: Recurrence in Topological Dynamics: Furstenberg Families and Ellis Actions. The University Series in Mathematics, p. 265. Plenum Press. https://doi.org/10.1007/978-1-4757-2668-8 (1997)
Berghammer, R., Winter, M.: Order- and graph-theoretic investigation of dimensions of finite topological spaces and Alexandroff spaces. Monatsh. Math. 190(1), 33–78 (2019). https://doi.org/10.1007/s00605-019-01261-1https://doi.org/10.1007/s00605-019-01261-1
Wu, Y., Zhao, D.: Three conjectures of Ostrander on digraph Laplacian eigenvectors. Art Discrete Appl. Math. 4(2), 1–21 (2021). https://doi.org/10.26493/2590-9770.1420.b57. Paper No. 2.08
Edelman, P. H., Saks, M. E.: Combinatorial representation and convex dimension of convex geometries. Order 5(1), 23–32 (1988). https://doi.org/10.1007/BF00143895
Korte, B., Lovász, L.: Homomorphisms and Ramsey properties of antimatroids. Discrete Appl. Math. 15(2–3), 283–290 (1986). https://doi.org/10.1016/0166-218X(86)90049-1
Habib, M., Nourine, L.: Representation of lattices via set-colored posets. Discrete Appl. Math. 249, 64–73 (2018). https://doi.org/10.1016/j.dam.2018.03.068
Rota, G. -C.: The many lives of lattice theory. Notices Am. Math. Soc. 44(11), 1440–1445 (1997)
Libkin, L., Gurvich, V.: Trees as semilattices. Discrete Math. 145(1–3), 321–327 (1995). https://doi.org/10.1016/0012-365X(94)00046-Lhttps://doi.org/10.1016/0012-365X(94)00046-L
Luccio, F.: Arithmetic for rooted trees. Theory Comput. Syst. 60(1), 33–52 (2017). https://doi.org/10.1007/s00224-016-9731-zhttps://doi.org/10.1007/s00224-016-9731-z
Talagrand, M.: The Generic Chaining: Upper and Lower Bounds of Stochastic Processes. Springer Monographs in Mathematics, p. 222. Springer. https://doi.org/10.1007/3-540-27499-5 (2005)
Frankl, P., Tokushige, N.: Extremal Problems for Finite Sets. Student Mathematical Library, vol. 86, p. 224 American Mathematical Society. https://doi.org/10.1090/stml/086 (2018)
Klain, D. A., Rota, G. -C.: Introduction to Geometric Probability. Lezioni Lincee. [Lincei Lectures], p. 178. Cambridge University Press (1997)
Lovász, L.: Submodular functions and convexity. In: Bachem, A., Korte, B., Grötschel, M. (eds.) Mathematical Programming: The State of the Art (Bonn, 1982). https://doi.org/10.1007/978-3-642-68874-4_10, pp 235–257. Springer (1983)
Bonamy, M., Bousquet, N., Thomassé, S.: The Erdös-Hajnal conjecture for long holes and antiholes. SIAM J. Discrete Math. 30(2), 1159–1164 (2016). https://doi.org/10.1137/140981745
Song, Z. -X., Ward, T., York, A.: A note on weighted rooted trees. Discrete Math. 338(12), 2492–2494 (2015). https://doi.org/10.1016/j.disc.2015.06.014
Grabisch, M.: Set Functions, Games and Capacities in Decision Making. Theory and Decision Library C. Game Theory, Social Choice, Decision Theory, and Optimization, vol. 46, p. 473. Springer (2016)
Fujishige, S.: Polymatroidal dependence structure of a set of random variables. Inform. Control 39(1), 55–72 (1978). https://doi.org/10.1016/S0019-9958(78)91063-X
Edmonds, J.: Submodular Functions, Matroids, and Certain Polyhedra. In: Combinatorial Structures and Their Applications (Proc. Calgary Internat. Conf., Calgary, Alta. 1969), pp 69–87. Gordon and Breach (1970)
Jowett, S., Mo, S., Whittle, G.: Connectivity functions and polymatroids. Adv. Appl. Math. 81, 1–12 (2016). https://doi.org/10.1016/j.aam.2016.06.004
Huber, K. T., Moulton, V., Steel, M.: Phylogenetic flexibility via Hall-type inequalities and submodularity. Bull. Math. Biol. 81(2), 598–617 (2019). https://doi.org/10.1007/s11538-018-0419-1
Tao, T.: An Introduction to Measure Theory. Graduate Studies in Mathematics, vol. 126, p. 206 American Mathematical Society. https://doi.org/10.1090/gsm/126(2011)
Talagrand, M.: Maharam’s problem. Ann. Math. (2) 168 (3), 981–1009 (2008). https://doi.org/10.4007/annals.2008.168.981https://doi.org/10.4007/annals.2008.168.981
Yosida, K., Hewitt, E.: Finitely additive measures. Trans. Am. Math. Soc. 72, 46–66 (1952). https://doi.org/10.2307/1990654https://doi.org/10.2307/1990654
König, H.: Measure and Integration: An Advanced Course in Basic Procedures and Applications, p. 260. Springer. Corrected, 2nd printing (2009)
Pietsch, A.: History of Banach Spaces and Linear Operators, p 855. Birkhäuser, Boston (2007). https://doi.org/10.1007/978-0-8176-4596-0
Ben-Eliezer, I., Krivelevich, M., Sudakov, B.: The size Ramsey number of a directed path. J. Combin. Theory Ser. B 102(3), 743–755 (2012). https://doi.org/10.1016/j.jctb.2011.10.10.002
Wu, Y., Zhu, Y.: BBT tree orders of countable connected graphs (2020)
Gelfand, I. M., Goresky, R. M., MacPherson, R. D., Serganova, V. V.: Combinatorial geometries, convex polyhedra, and Schubert cells. Adv. Math. 63(3), 301–316 (1987). https://doi.org/10.1016/0001-8708(87)90059-4https://doi.org/10.1016/0001-8708(87)90059-4
Murota, K.: Discrete Convex Analysis. SIAM Monographs on Discrete Mathematics and Applications, p. 389. Society for Industrial and Applied Mathematics (SIAM). https://doi.org/10.1137/1.9780898718508https://doi.org/10.1137/1.9780898718508 (2003)
Shapley, L.S.: Cores of convex games. Int. J. Game Theory 1, 11–261197172199 (1971/72). https://doi.org/10.1007/BF01753431
Kannai, Y.: The Core and balancedness. In: Aumann, R., Hart, S (eds.) Handbook of Game Theory with Economic Applications, Chap. 12. https://doi.org/10.1016/S1574-0005(05)80015-3, vol. 1, pp 355–395, North-Holland (1992)
Abe, T.: Decomposing a balanced game: a necessary and sufficient condition for the nonemptiness of the core. Econ. Lett. 176, 9–13 (2019). https://doi.org/10.1016/j.econlet.2018.12.009
Forand, J. G., Uyanik, M.: Fixed-point approaches to the proof of the Bondareva-Shapley Theorem. Econ. Theory Bull. 7(1), 117–124 (2019). https://doi.org/10.1007/s40505-018-0146-7
Kannai, Y.: Countably additive measures in cores of games. J. Math. Anal. Appl. 27, 227–240 (1969). https://doi.org/10.1016/0022-247X(69)90044-4
Pintér, M.: Algebraic duality theorems for infinite LP problems. Linear Algebra Appl. 434(3), 688–693 (2011). https://doi.org/10.1016/j.laa.2010.10.09.007
Schmeidler, D.: On balanced games with infinitely many players. Technical report, The Hebrew University of Jerusalem, Jerusalem, Israel. Research program in game theory and mathematical economics (1967)
Fragnelli, V., Llorca, N., Sánchez-Soriano, J., Tijs, S., Branzei, R.: Convex games with an infinite number of players and sequencing situations. J. Math. Anal. Appl. 362(1), 200–209 (2010). https://doi.org/10.1016/j.jmaa.2009.07.057
Chateauneuf, A., Ventura, C.: Partial probabilistic information. J. Math. Econ. 47(1), 22–28 (2011). https://doi.org/10.1016/j.jmateco.2010.10.09.007
Kindler, J.: The sigma-core of convex games and the problem of measure extension. Manuscr. Math. 66(1), 97–108 (1989). https://doi.org/10.1007/BF02568484
Parker, J. M.: The sigma-core of a cooperative game. Manuscr. Math. 70(3), 247–253 (1991). https://doi.org/10.1007/BF02568374
Parker, J. M.: Extreme points of a set of contents majorized by a submodular set function. Arch. Math. (Basel) 59(6), 572–580 (1992). https://doi.org/10.1007/BF01194850
Sagara, N., Vlach, M.: A new class of convex games on σ-algebras and the optimal partitioning of measurable spaces. Int. J. Game Theory 40 (3), 617–630 (2011). https://doi.org/10.1007/s00182-010-0258-2https://doi.org/10.1007/s00182-010-0258-2
Schmeidler, D.: Cores of exact games. I. J. Math. Anal. Appl. 40, 214–225 (1972). https://doi.org/10.1016/0022-247X(72)90045-5https://doi.org/10.1016/0022-247X(72)90045-5
Choquet, G.: Theory of capacities. Ann. Inst. Fourier (Grenoble) 5, 131–295 (1954). https://doi.org/10.5802/aif.53https://doi.org/10.5802/aif.53
Alfonsi, A.: A simple proof for the convexity of the Choquet integral. Statist. Probab. Lett. 104, 22–25 (2015). https://doi.org/10.1016/j.spl.2015.04.022
Wang, F., Wu, X. -Y., Zhu, R.: Last passage percolation on the complete graph. Stat. Probab. Lett. 164, 108798–10 (2020). https://doi.org/10.1016/j.spl.2020.108798
Aho, A. V., Hopcroft, J. E., Ullman, J. D.: The Design and Analysis of Computer Algorithms, p 470. Addison-Wesley Publishing Co., Reading (1975). Second printing, Addison-Wesley Series in Computer Science and Information Processing
Joó, A.: Gomory-Hu trees of infinite graphs with finite total weight. J. Graph Theory 88(1), 222–231 (2018). https://doi.org/10.1002/jgt.22207
Jung, H. A.: Wurzelbäume und unendliche Wege in Graphen. Math. Nachr. 41, 1–22 (1969). https://doi.org/10.1002/mana.19690410102
Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173, p. 411. Springer (2005)
Acknowledgments
This work was supported by National Natural Science Foundation of China (11971305,11671258).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The original online version of this article was revised due to half of the sentence was lost in the beginning of section 3.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Wu, Y., Zhu, Y. Submodular Functions and Rooted Trees. Theory Comput Syst 66, 1047–1073 (2022). https://doi.org/10.1007/s00224-022-10092-x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00224-022-10092-x