Abstract
We study Parallel Task Scheduling Pm|sizej|Cmax with a constant number of machines. This problem is known to be strongly NP-complete for each m ≥ 5, while it is solvable in pseudo-polynomial time for each m ≤ 3. We give a positive answer to the long-standing open question whether this problem is strongly NP-complete for m = 4. As a second result, we improve the lower bound of \(\frac {12}{11}\) for approximating pseudo-polynomial Strip Packing to \(\frac {5}{4}\). Since the best known approximation algorithm for this problem has a ratio of \(\frac {5}{4} + \varepsilon \), this result almost closes the gap between approximation ratio and inapproximability result. Both results are proved by a reduction from the strongly NP-complete problem 3-Partition.
Similar content being viewed by others
References
Adamaszek, A., Kociumaka, T., Pilipczuk, M., Pilipczuk, M.: Hardness of approximation for strip packing. TOCT 9(3), 14,1–14,7 (2017). https://doi.org/10.1145/3092026
Amoura, A.K., Bampis, E., Kenyon, C., Manoussakis, Y.: Scheduling independent multiprocessor tasks. Algorithmica 32(2), 247–261 (2002). https://doi.org/10.1007/s00453-001-0076-9
Baker, B.S., Brown, D.J., Howard, P.K.: 5/4 algorithm for two-dimensional packing. J. Algor. 2(4), 348–368 (1981). https://doi.org/10.1016/0196-6774(81)90034-1
Baker, B.S., Coffman, E.G. Jr., Rivest, R.L.: Orthogonal packings in two dimensions. SIAM J. Comput. 9(4), 846–855 (1980). https://doi.org/10.1137/0209064
Bansal, N., Correa, J/R., Kenyon, C., Sviridenko, M.: Bin packing in multiple dimensions Inapproximability results and approximation schemes. Math. Oper. Res. 31(1), 31–49 (2006). https://doi.org/10.1287/moor.1050.0168 https://doi.org/10.1287/moor.1050.0168
Bougeret, M., Dutot, P.-F., Jansen, K., Robenek, C., Trystram, D.: Approximation algorithms for multiple strip packing and scheduling parallel jobs in platforms. Discret. Math. Algor. Appl. 3(4), 553–586 (2011). https://doi.org/10.1142/S1793830911001413
Christensen, H.I., Khan, A., Pokutta, S., Tetali, P.: Approximation and online algorithms for multidimensional bin packing: A survey. Computer Science Review. https://doi.org/10.1016/j.cosrev.2016.12.001 (2017)
Coffman, E.G. Jr., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for level-oriented two-dimensional packing algorithms. SIAM J. Comput. 9(4), 808–826 (1980). https://doi.org/10.1137/0209062
Jianzhong, D, Leung, J.Y.-T.: Complexity of scheduling parallel task systems. SIAM J. Discret. Math. 2(4), 473–487 (1989). https://doi.org/10.1137/0402042
Feldmann, A., Sgall, J., Teng, S.-H.: Dynamic scheduling on parallel machines. Theor. Comput. Sci. 130(1), 49–72 (1994). https://doi.org/10.1016/0304-3975(94)90152-X
Gȧlvez, W., Grandoni, F., Ingala, S., Khan, A.: Improved pseudo-polynomial-time approximation for strip packing. In: 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pp. 9:1–9:14. https://doi.org/10.4230/LIPIcs.FSTTCS.2016.9 (2016)
Garey, M.R., Graham, R.L.: Bounds for multiprocessor scheduling with resource constraints. SIAM J. Comput. 4(2), 187–200 (1975). https://doi.org/10.1137/0204015
Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the theory of NP-completeness (1979)
Golan, I.: Performance bounds for orthogonal oriented two-dimensional packing algorithms. SIAM J. Comput. 10(3), 571–582 (1981). https://doi.org/10.1137/0210042
Harren, R., Jansen, K., Prȧdel, L., Rob van, S.: A (5/3 + 𝜖)-approximation for strip packing. Comput. Geom. 47 (2), 248–267 (2014). https://doi.org/10.1016/j.comgeo.2013.08.008
Harren, R, van Stee, R.: Improved absolute approximation ratios for two-dimensional packing problems. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, Volume 5687 of Lecture Notes in Computer Science, pp 177–189. Springer (2009), https://doi.org/10.1007/978-3-642-03685-9_14
Jansen, K.: A (3/2+) approximation algorithm for scheduling moldable and non-moldable parallel tasks. In: 24th ACM Symposium on Parallelism in Algorithms and Architectures, (SPAA), pp. 224–235. https://doi.org/10.1145/2312005.2312048 (2012)
Jansen, K., Land, F.: Scheduling monotone moldable jobs in linear time. In: 2018 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2018, Vancouver, BC, Canada, May 21-25, 2018, pp. 172–181. https://doi.org/10.1109/IPDPS.2018.00027 (2018)
Jansen, K., Porkolab, L.: Linear-time approximation schemes for scheduling malleable parallel tasks. Algorithmica 32(3), 507–520 (2002). https://doi.org/10.1007/s00453-001-0085-8
Jansen, K., Rau, M.: Closing the gap for pseudo-polynomial strip packing. arXiv:1712.04922 (2017)
Jansen, K., Rau, M.: Improved approximation for two dimensional strip packing with polynomial bounded width. In: WALCOM: Algorithms and Computation, Volume 10167 of LNCS, pp. 409–420. https://doi.org/10.1007/978-3-319-53925-6_32 (2017)
Jansen, K., Solis-Oba, R.: Rectangle packing with one-dimensional resource augmentation. Discret. Optim. 6(3), 310–323 (2009). https://doi.org/10.1016/j.disopt.2009.04.001
Jansen, K., Thȯle, R.: Approximation algorithms for scheduling parallel jobs. SIAM J. Comput. 39(8), 3571–3615 (2010). https://doi.org/10.1137/080736491
Kenyon, C., Rėmila, E.: A near-optimal solution to a two-dimensional cutting stock problem. Math. Oper. Res. 25(4), 645–656 (2000). https://doi.org/10.1287/moor.25.4.645.12118
Ludwig, W., Tiwari, P.: Scheduling malleable and nonmalleable parallel tasks. In: 5th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 167–176 (1994)
Nadiradze, G., Wiese, A.: On approximating strip packing with a better ratio than 3/2. In: 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1491–1510. https://doi.org/10.1137/1.9781611974331.ch102 https://doi.org/10.1137/1.9781611974331.ch102 (2016)
Schiermeyer, I: Reverse-fit: A 2-optimal algorithm for packing rectangles. In: 2nd Annual European Symposium on Algorithms (ESA) - Algorithms, pp. 290–299. https://doi.org/10.1007/BFb0049416 (1994)
Sleator, D.D.: A 2.5 times optimal algorithm for packing in two dimensions. Inf. Process. Lett. 10(1), 37–40 (1980). https://doi.org/10.1016/0020-0190(80)90121-0
Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM J. Comput. 26 (2), 401–409 (1997). https://doi.org/10.1137/S0097539793255801
Sviridenko, M.: A note on the kenyon-remila strip-packing algorithm. Inf. Process. Lett. 112(1-2), 10–12 (2012). https://doi.org/10.1016/j.ipl.2011.10.003
Turek, J., Wolf, J.L., Philip, S.: Approximate algorithms scheduling parallelizable tasks. In: 4th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 323–332. https://doi.org/10.1145/140901.141909 (1992)
Acknowledgements
The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. This work was supported by German Research Foundation (DFG) project JA 612 /20-1.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article is part of the Topical Collection on Computer Science Symposium in Russia (2018)
This work was supported by German Research Foundation (DFG) project JA 612/20-1
Rights and permissions
About this article
Cite this article
Henning, S., Jansen, K., Rau, M. et al. Complexity and Inapproximability Results for Parallel Task Scheduling and Strip Packing. Theory Comput Syst 64, 120–140 (2020). https://doi.org/10.1007/s00224-019-09910-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00224-019-09910-6