[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Space-Efficient Algorithms for Longest Increasing Subsequence

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Given a sequence of integers, we want to find a longest increasing subsequence of the sequence. It is known that this problem can be solved in \(O\left (n \log n\right )\) time and space. Our goal in this paper is to reduce the space consumption while keeping the time complexity small. For \(\sqrt {n} \le s \le n\), we present algorithms that use \(O\left (s \log n\right )\) bits and \(O\left (\frac {1}{s} \cdot n^{2} \cdot \log n\right )\) time for computing the length of a longest increasing subsequence, and \(O\left (\frac {1}{s} \cdot n^{2} \cdot \log ^{2} n\right )\) time for finding an actual subsequence. We also show that the time complexity of our algorithms is optimal up to polylogarithmic factors in the framework of sequential access algorithms with the prescribed amount of space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This algorithm outputs a longest increasing subsequence in the reversed order. One can access the input in the reversed order and find a longest decreasing subsequence to avoid this issue.

  2. Again this output is reversed. We can also compute the output in nonreversed order as discussed before.

References

  1. Ahn, H.-K., Baraldo, N., Oh, E., Silvestri, F.: A time-space trade-off for triangulations of points in the plane. In: COCOON 2017, pp 3–12 (2017). https://doi.org/10.1007/978-3-319-62389-4_1

  2. Aldous, D., Diaconis, P.: Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem. Bull. Am. Math. Soc. 36 (4), 413–432 (1999). https://doi.org/10.1090/S0273-0979-99-00796-X

    Article  MathSciNet  Google Scholar 

  3. Asano, T., Elmasry, A., Katajainen, J.: Priority queues and sorting for read-only data. In: TAMC 2013, pp 32–41 (2013). https://doi.org/10.1007/978-3-642-38236-9_4

  4. Asano, T., Izumi, T., Kiyomi, M., Konagaya, M., Ono, H., Otachi, Y., Schweitzer, P., Tarui, J., Uehara, R.: Depth-first search using O(n) bits. In: ISAAC 2014, pp 553–564 (2014). https://doi.org/10.1007/978-3-319-13075-0_44

  5. Banyassady, B., Korman, M., Mulzer, W., Van Renssen, André, Roeloffzen, M., Seiferth, P., Stein, Y.: Improved time-space trade-offs for computing Voronoi diagrams. In: STACS 2017, vol. 66, pp 9:1–9:14 (2017). https://doi.org/10.4230/LIPIcs.STACS.2017.9

  6. Bespamyatnikh, S., Segal, M.: Enumerating longest increasing subsequences and patience sorting. Inf. Process. Lett. 76(1–2), 7–11 (2000). https://doi.org/10.1016/S0020-0190(00)00124-1

    Article  MathSciNet  MATH  Google Scholar 

  7. Borodin, A., Cook, S.: A time-space tradeoff for sorting on a general sequential model of computation. SIAM J. Comput. 11(2), 287–297 (1982). https://doi.org/10.1137/0211022

    Article  MathSciNet  MATH  Google Scholar 

  8. Burstein, A., Lankham, I.: Combinatorics of patience sorting piles. Séminaire Lotharingien de Combinatoire 54A, B54Ab (2006). http://www.mat.univie.ac.at/~slc/wpapers/s54Aburlank.html

    MathSciNet  MATH  Google Scholar 

  9. Chakraborty, S., Satti, S.R.: Space-efficient algorithms for maximum cardinality search, stack BFS, queue BFS and applications. In: COCOON 2017, pp 87–98 (2017). https://doi.org/10.1007/978-3-319-62389-4_8

  10. Chan, T.M., Chen, E.Y.: Multi-pass geometric algorithms. Discret. Comput. Geom. 37(1), 79–102 (2007). https://doi.org/10.1007/s00454-006-1275-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Cook, S.A.: Deterministic CFL’s are accepted simultaneously in polynomial time and log squared space. In: STOC 1979, pp 338–345 (1979), https://doi.org/10.1145/800135.804426

  12. Crochemore, M., Porat, E.: Fast computation of a longest increasing subsequence and application. Inf. Comput. 208(9), 1054–1059 (2010). https://doi.org/10.1016/j.ic.2010.04.003

    Article  MathSciNet  MATH  Google Scholar 

  13. Darwish, O., Elmasry, A.: Optimal time-space tradeoff for the 2D convex-hull problem. In: ESA 2014, pp 284–295 (2014). https://doi.org/10.1007/978-3-662-44777-2_24

  14. Elmasry, A., Hagerup, T., Kammer, F.: Space-efficient basic graph algorithms. In: STACS 2015, vol. 30, pp 288–301 (2015). https://doi.org/10.4230/LIPIcs.STACS.2015.288

  15. Ergun, F., Jowhari, H.: On the monotonicity of a data stream. Combinatorica 35(6), 641–653 (2015). https://doi.org/10.1007/s00493-014-3035-1

    Article  MathSciNet  MATH  Google Scholar 

  16. Frederickson, G.N.: Upper bounds for time-space trade-offs in sorting and selection. J Comput Syst Sci 34(1), 19–26 (1987). https://doi.org/10.1016/0022-0000(87)90002-X

    Article  MathSciNet  MATH  Google Scholar 

  17. Fredman, M.L.: On computing the length of longest increasing subsequences. Discret. Math. 11(1), 29–35 (1975). https://doi.org/10.1016/0012-365X(75)90103-X

    Article  MathSciNet  MATH  Google Scholar 

  18. Gál, A., Gopalan, P.: Lower bounds on streaming algorithms for approximating the length of the longest increasing subsequence. SIAM J. Comput. 39(8), 3463–3479 (2010). https://doi.org/10.1137/090770801

    Article  MathSciNet  Google Scholar 

  19. Gopalan, P., Jayram, T.S., Krauthgamer, R., Kumar, R.: Estimating the sortedness of a data stream. In: SODA 2007, pp 318–327 (2007). http://dl.acm.org/citation.cfm?id=1283417

  20. Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest common subsequences. Commun. ACM 20(5), 350–353 (1977). https://doi.org/10.1145/359581.359603

    Article  MathSciNet  MATH  Google Scholar 

  21. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  22. Liben-Nowell, D., Vee, E., An, Z.: Finding longest increasing and common subsequences in streaming data. J. Comb. Optim. 11(2), 155–175 (2006). https://doi.org/10.1007/s10878-006-7125-x

    Article  MathSciNet  MATH  Google Scholar 

  23. Lincoln, A., Williams, V.V., Wang, J.R., Ryan Williams, R.: Deterministic time-space trade-offs for k-SUM. In: ICALP 2016, pp 58:1–58:14 (2016), https://doi.org/10.4230/LIPIcs.ICALP.2016.58

  24. Mallows, C.L.: Problem 62-2, patience sorting. SIAM Rev. 4(2), 143–149 (1962). http://www.jstor.org/stable/2028371

    Article  Google Scholar 

  25. Mallows, C.L.: Problem 62-2. SIAM Rev. 5(4), 375–376 (1963). http://www.jstor.org/stable/2028347

    Article  Google Scholar 

  26. Mallows, C.L.: Patience sorting. Bulletin of the Institute of Mathematics and its Applications 9, 216–224 (1973)

    Google Scholar 

  27. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. Theor. Comput. Sci. 12(3), 315–323 (1980). https://doi.org/10.1016/0304-3975(80)90061-4

    Article  MathSciNet  MATH  Google Scholar 

  28. Naumovitz, T., Saks, M.: A polylogarithmic space deterministic streaming algorithm for approximating distance to monotonicity. In: SODA 2015, pp 1252–1262 (2015). https://doi.org/10.1137/1.9781611973730.83

  29. Nisan, N.: RL \(\subseteq \) SC. In: STOC 1992, pp 619–623 (1992). https://doi.org/10.1145/129712.129772

  30. Pagter, J., Rauhe, T.: Optimal time-space trade-offs for sorting. In: FOCS 1998, pp 264–268 (1998). https://doi.org/10.1109/SFCS.1998.743455

  31. Pilipczuk, M., Wrochna, M.: On space efficiency of algorithms working on structural decompositions of graphs. In: STACS 2016, vol. 47, pp 57:1–57:15 (2016). https://doi.org/10.4230/LIPIcs.STACS.2016.57

  32. Ramanan, P.: Tight \(\Omega (n \lg n)\) lower bound for finding a longest increasing subsequence. Int. J. Comput. Math. 65(3–4), 161–164 (1997). https://doi.org/10.1080/00207169708804607

    Article  MathSciNet  MATH  Google Scholar 

  33. Romik, D.: The surprising mathematics of longest increasing subsequences. Cambridge University Press, Cambridge (2015). https://doi.org/10.1017/CBO9781139872003

    MATH  Google Scholar 

  34. Saks, M., Seshadhri, C.: Space efficient streaming algorithms for the distance to monotonicity and asymmetric edit distance. In: SODA 2013, pp 1698–1709 (2013). https://doi.org/10.1137/1.9781611973105.122

  35. Saks, M., Seshadhri, C: Estimating the longest increasing sequence in polylogarithmic time. SIAM J. Comput. 46(2), 774–823 (2017). https://doi.org/10.1137/130942152

    Article  MathSciNet  MATH  Google Scholar 

  36. Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970). https://doi.org/10.1016/S0022-0000(70)80006-X

    Article  MathSciNet  MATH  Google Scholar 

  37. Schensted, C.: Longest increasing and decreasing subsequences. Can. J. Math. 13(2), 179–191 (1961). https://doi.org/10.4153/CJM-1961-015-3

    Article  MathSciNet  MATH  Google Scholar 

  38. Su, X., Woodruff, D.P.: The communication and streaming complexity of computing the longest common and increasing subsequences. In: SODA 2007, pp 336–345 (2007). http://dl.acm.org/citation.cfm?id=1283383.1283419

  39. Wang, J.R.: Space-efficient randomized algorithms for K-SUM. In: ESA 2014, pp 810–829 (2014). https://doi.org/10.1007/978-3-662-44777-2_67

Download references

Acknowledgments

The authors are grateful to William S. Evans for bringing the reduction from LCS to LIS mentioned in the concluding remarks to their attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yota Otachi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Special Issue on Theoretical Aspects of Computer Science (2018)

Partially supported by MEXT/JSPS KAKENHI grant numbers JP17H01698, JP18H04091, JP18K11168, JP18K11169, JP24106004. A preliminary version appeared in the proceedings of the 35th International Symposium on Theoretical Aspects of Computer Science (STACS 2018), vol. 96 of Leibniz International Proceedings in Informatics, pp. 44:1-44:15, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiyomi, M., Ono, H., Otachi, Y. et al. Space-Efficient Algorithms for Longest Increasing Subsequence. Theory Comput Syst 64, 522–541 (2020). https://doi.org/10.1007/s00224-018-09908-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-018-09908-6

Keywords

Navigation