[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Martin-Löf Randomness, Invariant Measures and Countable Homogeneous Structures

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We use ideas from topological dynamics (amenability), combinatorics (structural Ramsey theory) and model theory (Fraïssé limits) to study closed amenable subgroups G of the symmetric group S of a countable set, where S has the topology of pointwise convergence. We construct G-invariant measures on the universal minimal flows associated with these groups G in, moreover, an algorithmic manner. This leads to an identification of the generic elements, in the sense of being Martin-Löf random, of these flows with respect to the constructed invariant measures. Along these lines we study the random elements of S , which are permutations that transform recursively presented universal structures into such structures which are Martin-Löf random.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banach, S.: Sur le problème de la mesure. Fundam. Math. 4, 7–33 (1923)

    MATH  Google Scholar 

  2. Bhattacharjee, M., Macpherson, D.: A locally finite dense group acting on the random graph. Forum Math. 17, 513–517 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bienvenue, L., Gacs, P., Hoyrup, M., Rojas, C., Shen, A.: Algorithmic tests and randomness with respect to a class of measures (2011). Available at http://arxiv.org/abs/1103.1529

  4. Csima, F., Harizanov, V.S., Miller, R., Montálban, A.: Computability of Fraïssé limits. J. Symb. Log. 76(1), 66–93 (2011)

    Article  MATH  Google Scholar 

  5. Drinfield, V.G.: Solution of the Banach-Ruziewicz problem on S 2 and S 3. Funct. Anal. Appl. 18, 77–78 (1984)

    Google Scholar 

  6. Ellis, R.: Universal minimal sets. Proc. Am. Math. Soc. 11, 272–281 (1949)

    Google Scholar 

  7. Fouché, W.L.: Symmetry and the Ramsey degree of posets. Discrete Math. 167/168, 309–315 (1997)

    Article  Google Scholar 

  8. Fouché, W.L., Potgieter, P.H.: Kolmogorov complexity and symmetrical relational structures. J. Symb. Log. 63, 1083–1094 (1998)

    Article  MATH  Google Scholar 

  9. Fremlin, D.H.: Measure Theory: Topological Measure Spaces, vol. 4 (2003). Torres Fremlin

    MATH  Google Scholar 

  10. Glasner, E., Weiss, B.: Minimal actions of the group S(ℤ) of permutations of the integers. Geom. Funct. Anal. 5, 964–988 (2002)

    Article  MathSciNet  Google Scholar 

  11. Harrow, A., Recht, B., Chuang, I.: Efficient discrete approximations of quantum gates. J. Math. Phys. 43, 4445–4451 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  13. Hrushovski, E.: Extending partial isomorphisms of graphs. Combinatorica 12, 411–416 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kechris, A.S.: The dynamics of automorphism groups of homogeneous structures. Lecture at LMS Northern Regional Meeting, July 2011

  15. Kechris, A.S., Pestov, V.G., Todorcevic, S.: Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups. Geom. Funct. Anal. 15, 106–189 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kechris, A.S., Rosendal, C.: Turbulence, amalgamation and generic automorphisms of homogeneous structures. Proc. Lond. Math. Soc. 94(3), 302–350 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Kechris, A.S., Sokič, M.: Dynamical properties of the automorphism groups of the random poset and random distributive lattice (2011). Available at http://www.math.caltech.edu/people/kechris.html

  18. Lubotzky, A., Phillips, R., Sarnak, P.: Hecke operators and distributing points on S 2 I. Commun. Pure Appl. Math. 39, 149–186 (1986)

    Article  MathSciNet  Google Scholar 

  19. Lubotzky, A., Phillips, R., Sarnak, P.: Hecke operators and distributing points on S 2 II. Commun. Pure Appl. Math. 40, 410–420 (1987)

    Article  MathSciNet  Google Scholar 

  20. Margulis, G.: Some remarks on invariant means. Monatshefte Math. 90, 233–235 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Margulis, G.: Finitely additive invariant measures on Euclidean spaces. Ergod. Theory Dyn. Syst. 2, 383–396 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Neumann, B.H.: On ordered division rings. Trans. Am. Math. Soc. 66, 202–252 (1949)

    Article  MATH  Google Scholar 

  23. Pestov, V.G.: On free actions, minimal flows, and a problem by Ellis. Trans. Am. Math. Soc. 350(10), 4149–4165 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Petrov, F., Vershik, A.: Uncountable graphs and invariant means on the set of universal countable graphs. In: Random Structures and Algorithms, vol. 126, pp. 389–405 (2010)

    Google Scholar 

  25. Sarnak, P.: Some Applications of Modular Forms. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  26. Sullivan, D.: For n>3, there is only one finitely additive rotationally invariant measure on the n-sphere defined on all Lebesgue measurable sets. Bull., New Ser., Am. Math. Soc. 4, 121–123 (1981)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The research is based upon work supported by the National Research Foundation (NRF) of South Africa. Any opinion, findings and conclusions or recommendations expressed in this material are those of the author and therefore the NRF does not accept any liability in regard thereto.

The author also wishes to express his thanks to an anonymous referee for a careful reading of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem L. Fouché.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fouché, W.L. Martin-Löf Randomness, Invariant Measures and Countable Homogeneous Structures. Theory Comput Syst 52, 65–79 (2013). https://doi.org/10.1007/s00224-012-9419-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-012-9419-y

Keywords

Navigation