[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The Efficiency of Fair Division

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

In this paper we study the impact of fairness on the efficiency of allocations. We consider three different notions of fairness, namely proportionality, envy-freeness, and equitability for allocations of divisible and indivisible goods and chores. We present a series of results on the price of fairness under the three different notions that quantify the efficiency loss in fair allocations compared to optimal ones. Most of our bounds are either exact or tight within constant factors. Our study is of an optimistic nature and aims to identify the potential of fairness in allocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, E., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asadpour, A., Saberi, A.: An approximation algorithm for max-min fair allocation of indivisible goods. SIAM J. Comput. 39(7), 2970–2989 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aumann, Y., Dombb, Y.: The efficiency of fair division with connected pieces. In: Proceedings of the 6th International Workshop on Internet and Network Economics (WINE’10). LNCS, vol. 6484. Springer, Berlin, pp. 26–37 (2010)

    Google Scholar 

  4. Bansal, N., Sviridenko, M.: The Santa Claus problem. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing (STOC ’06), pp. 31–40 (2006)

    Chapter  Google Scholar 

  5. Bateni, M., Charikar, M., Guruswami, V.: Maxmin allocation via degree lower-bounded arborescences. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC ’09), pp. 543–552 (2009)

    Chapter  Google Scholar 

  6. Bezáková, I., Dani, V.: Allocating indivisible goods. SIGecom Exch. 5(3), 11–18 (2005)

    Article  Google Scholar 

  7. Bouveret, S., Lang, J.: Efficiency and envy-freeness in fair division of indivisible goods: Logical representation and complexity. J. Artif. Intell. Res. 32, 525–564 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Brams, S.J., Taylor, A.D.: An envy-free cake division protocol. Am. Math. Mon. 102(1), 9–18 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brams, S.J., Taylor, A.D.: Fair Division: From Cake-Cutting to Dispute Resolution. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  10. Brams, S.J., Taylor, A.D., Zwicker, W.S.: A moving-knife solution to the four-person envy free cake division problem. Proc. Am. Math. Soc. 125(2), 547–554 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Buchbinder, N., Naor, J.: Fair online load balancing. In: Proceedings of the 18th Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’06), pp. 291–298 (2006)

    Chapter  Google Scholar 

  12. Chakrabarty, D., Chuzhoy, J., Khanna, S.: On allocating goods to maximize fairness. In: Proceedings of the 50th Annual Symposium on Foundations of Computer Science (FOCS ’09), pp. 107–116 (2009)

    Google Scholar 

  13. Chevaleyre, Y., Endriss, U., Estivie, S., Maudet, N.: Reaching envy-free states in distributed negotiation settings. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI ’07), pp. 1239–1244 (2007)

    Google Scholar 

  14. Chevaleyre, Y., Endriss, U., Maudet, N.: Allocating goods on a graph to eliminate envy. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI ’07), pp. 700–705 (2007)

    Google Scholar 

  15. Deng, X., Qi, Q., Saberi, A.: On the complexity of envy-free cake cutting. Manuscript, arXiv:0907.1334 [cs.GT] (2009)

  16. Edmonds, J., Pruhs, K.: Cake-cutting really is not a piece of cake. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’06), pp. 271–278 (2006)

    Chapter  Google Scholar 

  17. Even, S., Paz, A.: A note on cake-cutting. Discrete Appl. Math. 7, 285–296 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Golovin, D.: Max-min fair allocation of indivisible goods. Technical Report, Carnegie Mellon University, CMU-CS-05-144, (2005)

  19. Kleinberg, J., Rabani, Y., Tardos, E.: Fairness in routing and load balancing. J. Comput. Syst. Sci. 63(1), 2–20 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kumar, A., Kleinberg, J.: Fairness measures for resource allocation. SIAM J. Comput. 36(3), 657–680 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. Math. Program. 46, 259–271 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lipton, R., Markakis, E., Mossel, E., Saberi, A.: On approximately fair allocations of indivisible goods. In: Proceedings of the 5th ACM Conference on Electronic Commerce (EC ’04), pp. 125–131 (2004)

    Chapter  Google Scholar 

  23. Magdon-Ismail, M., Busch, C., Krishnamoorthy, M.S.: Cake-cutting is not a piece of cake. In: Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS ’03), LNCS, vol. 2607, pp. 596–607. Springer, Berlin (2003)

    Google Scholar 

  24. Procaccia, A.: Thou shalt covet thy neighbor’s cake. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI ’09), pp. 239–244 (2009)

    Google Scholar 

  25. Robertson, J.M., Webb, W.A.: Cake-Cutting Algorithms: Be Fair if You Can. AK Peters Ltd, Wellesley (1998)

    MATH  Google Scholar 

  26. Saberi, A., Wang, Y.: Cutting a cake for five people. In: Proceedings of the 5th International Conference on Algorithmic Aspects in Information and Management (AAIM ’09), pp. 292–300 (2009)

    Chapter  Google Scholar 

  27. Steinhaus, H.: The problem of fair division. Econometrica 16, 101–104 (1948)

    Google Scholar 

  28. Stromquist, W.: How to cut a cake fairly. Am. Math. Mon. 87(8), 640–644 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stromquist, W.: Envy-free cake divisions cannot be found by finite protocols. Electron. J. Comb. 15, R11 (2008)

    MathSciNet  Google Scholar 

  30. Tadenuma, K., Thomson, W.: The fair allocation of an indivisible good when monetary compensations are possible. Math. Soc. Sci. 25(2), 117–132 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Woeginger, G.J., Sgall, J.: On the complexity of cake-cutting. Discrete Optim. 4, 213–220 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Kaklamanis.

Additional information

A preliminary version of this paper appeared in Proceedings of the 5th International Workshop on Internet and Network Economics (WINE ’09), LNCS 5929, Springer, pp. 475–482, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caragiannis, I., Kaklamanis, C., Kanellopoulos, P. et al. The Efficiency of Fair Division. Theory Comput Syst 50, 589–610 (2012). https://doi.org/10.1007/s00224-011-9359-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-011-9359-y

Keywords

Navigation