[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Property Tester for Tree-Likeness of Quartet Topologies

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Property testing is a rapid growing field in theoretical computer science. It considers the following task: given a function f over a domain D, a property ℘ and a parameter 0<ε<1, by examining function values of f over o(|D|) elements in D, determine whether f satisfies ℘ or differs from any one which satisfies ℘ in at least ε|D| elements. An algorithm that fulfills this task is called a property tester. We focus on tree-likeness of quartet topologies, which is a combinatorial property originating from evolutionary tree construction. The input function is f Q , which assigns one of the three possible topologies for every quartet over an n-taxon set S. We say that f Q satisfies tree-likeness if there exists an evolutionary tree T whose induced quartet topologies coincide with f Q . In this paper, we prove the existence of a set of quartet topologies of error number at least \(c{n\choose 4}\) for some constant c>0, and present the first property tester for tree-likeness of quartet topologies. Our property tester makes at most O(n 3/ε) queries, and is of one-sided error and non-adaptive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon, N., Shapira, A.: Homomorphisms in graph property testing—A survey. Electronic Colloquium on Computational Complexity (ECCC). Report No. 85 (2005)

  2. Brooks, R.L.: On coloring the nodes of a network. Math. Proc. Camb. Philos. Soc. 37, 194–197 (1941)

    Article  MathSciNet  Google Scholar 

  3. Bandelt, H.J., Dress, A.: Reconstructing the shape of a tree from observed dissimilarity data. Adv. Appl. Math. 7, 309–343 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Dor, A., Chor, B., Graur, D., Ophir, R., Pelleg, D.: From four-taxon trees to phylogenies: the case of mammalian evolution. In: Proceedings of the RECOMB, 1998, pp. 9–19. Also see: constructing phylogenies from quartets: elucidation of eutherian superordinal relationships. J. Comput. Biol. 5, 377–390 (1998)

    Google Scholar 

  5. Berry, V., Gascuel, O.: Inferring evolutionary trees with strong combinatorial evidence. Theor. Comput. Sci. 240, 271–298 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berry, V., Jiang, T., Kearney, P.E., Li, M., Wareham, H.T.: Quartet cleaning: improved algorithms and simulations. In: Proceedings of the 7th Annual European Symposium on Algorithms (ESA 99). Lecture Notes in Comput. Sci., vol. 1643, pp. 313–324. Springer, Berlin (1999)

    Google Scholar 

  7. Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications to numerical problems. J. Comput. Syst. Sci. 47, 549–595 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bryant, D., Steel, M.: Constructing optimal trees from quartets. J. Algorithms 38, 237–259 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chor, B.: From quartets to phylogenetic trees. In: Proceedings of the 25th Conference on Current Trends in Theory and Practice of Informatics (SOFSEM). Lecture Notes in Comput. Sci., vol. 1521, pp. 36–53. Springer, Berlin (1998)

    Google Scholar 

  10. Chang, M.-S., Lin, C.-C., Rossmanith, P.: New fixed-parameter algorithms for the minimum quartet inconsistency problem. Theory Comput. Syst. 47, 342–368 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colonius, H., Schulze, H.H.: Tree structures for proximity data. Br. J. Math. Stat. Psychol. 34, 167–180 (1981)

    MathSciNet  MATH  Google Scholar 

  12. Erdős, P., Steel, M., Székely, L., Warnow, T.: A few logs suffice to build (almost) all trees (Part 1). Random Struct. Algorithms 14, 153–184 (1999)

    Article  Google Scholar 

  13. Fischer, E.: The art of uninformed decisions: A primer to property testing. Bull. Eur. Assoc. Theor. Comput. Sci. (EATCS) 75, 97–126 (2001)

    MATH  Google Scholar 

  14. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc., Sunderland

  15. Goldreich, O.: Combinatorial property testing—a survey. In: Pardalos, P., Rajaseekaran, S., Rolin, J. (eds.) Randomization Methods in Algorithm Design. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 43, pp. 45–59. AMS, Providence (1998)

    Google Scholar 

  16. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. J. ACM 45, 653–750 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gramm, J., Niedermeier, R.: A fixed-parameter algorithm for minimum quartet inconsistency. J. Comput. Syst. Sci. 67, 723–741 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, T., Kearney, P.E., Li, M.: Some open problems in computational molecular biology. J. Algorithms 34, 194–201 (2000)

    Article  MathSciNet  Google Scholar 

  19. Jiang, T., Kearney, P.E., Li, M.: A polynomial time approximation scheme for inferring evolutionary tree from quartet topologies and its application. SIAM J. Comput. 30, 1942–1961 (2001)

    Article  MathSciNet  Google Scholar 

  20. Ron, D.: Property testing. In: Rajasekaran, S., Pardalos, P.M., Reif, J.H., Rolim, J.D.P. (eds.) Handbook of Randomized Computing, vol. II, pp. 597–649. Kluwer Academic, Dordrecht (2001)

    Google Scholar 

  21. Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications to program testing. SIAM J. Comput. 25, 252–271 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. J. Classif. 9, 91–116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Verwer, R.W.H., Pelt, J.V.: Analysis of binary trees when occasional multifurcations can be considered as aggregates of bifurcations. Bull. Math. Biol. 52, 629–641 (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang-Chieh Lin.

Additional information

This research was supported by the National Science Council of Taiwan under grant no. NSC 96-2221-E-194-045-MY3, and partially supported by NSC-DAAD Sandwich Program.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, MS., Lin, CC. & Rossmanith, P. A Property Tester for Tree-Likeness of Quartet Topologies. Theory Comput Syst 49, 576–587 (2011). https://doi.org/10.1007/s00224-010-9276-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-010-9276-5

Keywords

Navigation