Abstract
Consider the following model on the spreading of messages. A message initially convinces a set of vertices, called the seeds, of the Erdős-Rényi random graph G(n,p). Whenever more than a ρ∈(0,1) fraction of a vertex v’s neighbors are convinced of the message, v will be convinced. The spreading proceeds asynchronously until no more vertices can be convinced. This paper derives lower bounds on the minimum number of initial seeds, \(\mathrm{min\hbox{-}seed}(n,p,\delta,\rho)\), needed to convince a δ∈{1/n,…,n/n} fraction of vertices at the end. In particular, we show that (1) there is a constant β>0 such that \(\mathrm{min\hbox{-}seed}(n,p,\delta,\rho)=\Omega(\min\{\delta,\rho\}n)\) with probability 1−n −Ω(1) for p≥β (ln (e/min {δ,ρ}))/(ρ n) and (2) \(\mathrm{min\hbox{-}seed}(n,p,\delta,1/2)=\Omega(\delta n/\ln(e/\delta))\) with probability 1−exp (−Ω(δ n))−n −Ω(1) for all p∈[ 0,1 ]. The hidden constants in the Ω notations are independent of p.
Similar content being viewed by others
References
Artz, D., Gil, Y.: A survey of trust in computer science and the semantic web. J. Web Semant. Sci. Serv. Agents World Wide Web 5(2), 58–71 (2007)
Berger, E.: Dynamic monopolies of constant size. J. Comb. Theory, Ser. B 83(2), 191–200 (2001)
Bermond, J.-C., Bond, J., Peleg, D., Perennes, S.: The power of small coalitions in graphs. Discrete Appl. Math. 127(3), 399–414 (2003)
Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge (2001)
Chang, C.-L., Lyuu, Y.-D.: Spreading messages. Theor. Comput. Sci. 410(27–29), 2714–2724 (2009)
Chernoff, H.: A measure of the asymptotic efficiency of tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23, 493–507 (1952)
Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spreading. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 773–781 (2008)
Flocchini, P., Geurts, F., Santoro, N.: Optimal irreversible dynamos in chordal rings. Discrete Appl. Math. 113(1), 23–42 (2001)
Flocchini, P., Královič, R., Ružička, P., Roncato, A., Santoro, N.: On time versus size for monotone dynamic monopolies in regular topologies. J. Discrete Algorithms 1(2), 129–150 (2003)
Flocchini, P., Lodi, E., Luccio, F., Pagli, L., Santoro, N.: Dynamic monopolies in tori. Discrete Appl. Math. 137(2), 197–212 (2004)
Gleeson, J.P., Cahalane, D.J.: Seed size strongly affects cascades on random networks. Phys. Rev. E 75, 056103 (2007)
Grandison, T., Sloman, M.: A survey of trust in Internet applications. IEEE Commun. Surv. Tutor. 3(4), 2–16 (2000)
Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and distrust. In: Proceedings of the 13th International World Wide Web Conference, pp. 403–412 (2004)
Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, New York (1998)
Hedetniemi, S.T., Hedetniemi, S.M., Liestman, A.L.: A survey of broadcasting and gossiping in communication networks. Networks 18(4), 319–349 (1988)
Hromkovic, J., Klasing, R., Monien, B., Peine, R.: Dissemination of information in interconnection networks (broadcasting and gossiping). In: Du, D.-Z., Hsu, D.F. (eds.) Combinatorial Network Theory, pp. 125–212. Kluwer Academic, Norwell (1996)
Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spreading. In: Proceedings of the 41st IEEE Symposium on Foundations of Computer Science, pp. 565–574 (2000)
Linial, N., Peleg, D., Rabinovich, Y., Saks, M.: Sphere packing and local majorities in graphs. In: Proceedings of the 2nd Israel Symposium on Theory of Computing Systems, pp. 141–149 (1993)
Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)
Peleg, D.: Graph immunity against local influence. Technical Report CS96-11 (1996)
Peleg, D.: Size bounds for dynamic monopolies. Discrete Appl. Math. 86(2–3), 263–273 (1998)
Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theor. Comput. Sci. 282(2), 231–257 (2002)
Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976)
Schelling, T.C.: Hockey helmets, concealed weapons, and daylight saving: a study of binary choices with externalities. J. Confl. Res. 17(3), 381–428 (1973)
Watts, D.J.: A simple model of global cascades on random networks. Proc. Nat. Acad. Sci. 99(9), 5766–5771 (2002)
West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, New York (2001)
Author information
Authors and Affiliations
Corresponding author
Additional information
The authors are supported in part by the National Science Council of Taiwan under grant 97-2221-E-002-096-MY3 and Excellent Research Projects of National Taiwan University under grant 98R0062-05.
The authors are grateful to the anonymous reviewers for their comments and suggestions.
A preliminary version of this paper is presented at the 15th Computing: the Australasian Theory Symposium (CATS 2009), Wellington, New Zealand.
Rights and permissions
About this article
Cite this article
Chang, CL., Lyuu, YD. Spreading of Messages in Random Graphs. Theory Comput Syst 48, 389–401 (2011). https://doi.org/10.1007/s00224-010-9258-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00224-010-9258-7