[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A stable local commuting projector and optimal hp approximation estimates in \(\varvec{H}(\textrm{curl})\)

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We design an operator from the infinite-dimensional Sobolev space \(\varvec{H}(\textrm{curl})\) to its finite-dimensional subspace formed by the Nédélec piecewise polynomials on a tetrahedral mesh that has the following properties: (1) it is defined over the entire \(\varvec{H}(\textrm{curl})\), including boundary conditions imposed on a part of the boundary; (2) it is defined locally in a neighborhood of each mesh element; (3) it is based on simple piecewise polynomial projections; (4) it is stable in the \(\varvec{L}^2\)-norm, up to data oscillation; (5) it has optimal (local-best) approximation properties; (6) it satisfies the commuting property with its sibling operator on \(\varvec{H}(\textrm{div})\); (7) it is a projector, i.e., it leaves intact objects that are already in the Nédélec piecewise polynomial space. This operator can be used in various parts of numerical analysis related to the \(\varvec{H}(\textrm{curl})\) space. We in particular employ it here to establish the two following results: (i) equivalence of global-best, tangential-trace- and curl-constrained, and local-best, unconstrained approximations in \(\varvec{H}(\textrm{curl})\) including data oscillation terms; and (ii) fully h- and p- (mesh-size- and polynomial-degree-) optimal approximation bounds valid under the minimal Sobolev regularity only requested elementwise. As a result of independent interest, we also prove a p-robust equivalence of curl-constrained and unconstrained best-approximations on a single tetrahedron in the \(\varvec{H}(\textrm{curl})\)-setting, including hp data oscillation terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006). https://doi.org/10.1017/S0962492906210018

    Article  MathSciNet  Google Scholar 

  2. Adams, R.A.: Sobolev Spaces, p. 268. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London (1975). Pure and Applied Mathematics, vol. 65

  3. Arnold, D., Guzmán, J.: Local \(L^2\)-bounded commuting projections in FEEC. ESAIM Math. Model. Numer. Anal. 55(5), 2169–2184 (2021). https://doi.org/10.1051/m2an/2021054

    Article  MathSciNet  Google Scholar 

  4. Babuška, I., Suri, M.: The \(h\)-\(p\) version of the finite element method with quasi-uniform meshes. RAIRO Modél. Math. Anal. Numér. 21(2), 199–238 (1987). https://doi.org/10.1051/m2an/1987210201991

    Article  MathSciNet  Google Scholar 

  5. Bebendorf, M.: A note on the Poincaré inequality for convex domains. Z. Anal. Anwendungen 22(4), 751–756 (2003). https://doi.org/10.4171/ZAA/1170

    Article  MathSciNet  Google Scholar 

  6. Beck, R., Hiptmair, R., Hoppe, R.H.W., Wohlmuth, B.: Residual based a posteriori error estimators for eddy current computation. M2AN Math. Model. Numer. Anal. 34(1), 159–182 (2000). https://doi.org/10.1051/m2an:2000136

  7. Bespalov, A., Heuer, N.: A new H(div)-conforming \(p\)-interpolation operator in two dimensions. ESAIM Math. Model. Numer. Anal. 45(2), 255–275 (2011). https://doi.org/10.1051/m2an/2010039

    Article  MathSciNet  Google Scholar 

  8. Bespalov, A., Heuer, N.: Optimal error estimation for H(curl)-conforming \(p\)-interpolation in two dimensions. SIAM J. Numer. Anal. 47(5), 3977–3989 (2009). https://doi.org/10.1137/090753802

    Article  MathSciNet  Google Scholar 

  9. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44, p. 685. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36519-5

  10. Braess, D., Pillwein, V., Schöberl, J.: Equilibrated residual error estimates are \(p\)-robust. Comput. Methods Appl. Mech. Engrg. 198(13–14), 1189–1197 (2009). https://doi.org/10.1016/j.cma.2008.12.010

    Article  MathSciNet  Google Scholar 

  11. Braess, D., Schöberl, J.: Equilibrated residual error estimator for edge elements. Math. Comp. 77(262), 651–672 (2008). https://doi.org/10.1090/S0025-5718-07-02080-7

    Article  MathSciNet  Google Scholar 

  12. Chaumont-Frelet, T., Ern, A., Vohralík, M.: Polynomial-degree-robust \({\varvec {H}}({\rm curl})\)-stability of discrete minimization in a tetrahedron. C. R. Math. Acad. Sci. Paris 358(9–10), 1101–1110 (2020)

    MathSciNet  Google Scholar 

  13. Chaumont-Frelet, T., Ern, A., Vohralík, M.: Stable broken \({\varvec {H}}({\rm curl})\) polynomial extensions and \(p\)-robust a posteriori error estimates by broken patchwise equilibration for the curl-curl problem. Math. Comp. 91(333), 37–74 (2022). https://doi.org/10.1090/mcom/3673

    Article  MathSciNet  Google Scholar 

  14. Chaumont-Frelet, T., Vohralík, M.: \(p\)-robust equilibrated flux reconstruction in \({\varvec {H}}({\rm curl})\) based on local minimizations. Application to a posteriori analysis of the curl-curl problem. SIAM J. Numer. Anal. 61(4), 1783–1818 (2023). https://doi.org/10.1137/21M141909X

  15. Chaumont-Frelet, T., Vohralík, M.: Constrained and unconstrained stable discrete minimizations for \(p\)-robust local reconstructions in vertex patches in the de Rham complex. Found. Comput. Math., DOI 10.1007/s10208-024-09674-7 (2024). https://doi.org/10.1007/s10208-024-09674-7

  16. Chaumont-Frelet, T., Vohralík, M.: Equivalence of local-best and global-best approximations in \({\varvec {H}}({\rm curl})\). Calcolo 58, 53 (2021). https://doi.org/10.1007/s10092-021-00430-9

    Article  MathSciNet  Google Scholar 

  17. Christiansen, S.H., Winther, R.: Smoothed projections in finite element exterior calculus. Math. Comp. 77(262), 813–829 (2008). https://doi.org/10.1090/S0025-5718-07-02081-9

    Article  MathSciNet  Google Scholar 

  18. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications, vol. 4, p. 530. North-Holland, Amsterdam (1978)

  19. Costabel, M., Dauge, M., Nicaise, S.: Singularities of Maxwell interface problems. M2AN Math. Model. Numer. Anal. 33(3), 627–649 (1999). https://doi.org/10.1051/m2an:1999155

  20. Costabel, M., McIntosh, A.: On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265(2), 297–320 (2010). https://doi.org/10.1007/s00209-009-0517-8

    Article  MathSciNet  Google Scholar 

  21. Demkowicz, L., Buffa, A.: \(H^1\), \(H({\rm curl})\) and \(H({\rm div})\)-conforming projection-based interpolation in three dimensions. Quasi-optimal \(p\)-interpolation estimates. Comput. Methods Appl. Mech. Engrg. 194(2–5), 267–296 (2005). https://doi.org/10.1016/j.cma.2004.07.007

  22. Demkowicz, L., Gopalakrishnan, J., Schöberl, J.: Polynomial extension operators. Part I. SIAM J. Numer. Anal. 46(6), 3006–3031 (2008). https://doi.org/10.1137/070698786

    Article  MathSciNet  Google Scholar 

  23. Demkowicz, L., Gopalakrishnan, J., Schöberl, J.: Polynomial extension operators. Part II. SIAM J. Numer. Anal. 47(5), 3293–3324 (2009). https://doi.org/10.1137/070698798

    Article  MathSciNet  Google Scholar 

  24. Demkowicz, L., Gopalakrishnan, J., Schöberl, J.: Polynomial extension operators. Part III. Math. Comp. 81(279), 1289–1326 (2012). https://doi.org/10.1090/S0025-5718-2011-02536-6

    Article  MathSciNet  Google Scholar 

  25. Demkowicz, L.: Polynomial exact sequences and projection-based interpolation with application to Maxwell equations. In: Boffi, D., Brezzi, F., Demkowicz, L.F., Durán, R.G., Falk, R.S., Fortin, M. (eds.) Mixed Finite Elements, Compatibility Conditions, and Applications. Lecture Notes in Mathematics, vol. 1939, pp. 101–158. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-78319-0_3 . (Lectures given at the C.I.M.E. Summer School held in Cetraro, June 26–July 1, 2006, Edited by D. Boffi and L. Gastaldi)

  26. Ern, A., Gudi, T., Smears, I., Vohralík, M.: Equivalence of local- and global-best approximations, a simple stable local commuting projector, and optimal \(hp\) approximation estimates in \({\varvec {H}}({\rm div})\). IMA J. Numer. Anal. 42(2), 1023–1049 (2022). https://doi.org/10.1093/imanum/draa103

    Article  MathSciNet  Google Scholar 

  27. Ern, A., Guermond, J.-L.: Finite element quasi-interpolation and best approximation. ESAIM Math. Model. Numer. Anal. 51(4), 1367–1385 (2017)

    Article  MathSciNet  Google Scholar 

  28. Ern, A., Guermond, J.-L.: Finite Elements I. Approximation and Interpolation. Texts in Applied Mathematics, vol. 72, p. 325. Springer (2021). https://doi.org/10.1007/978-3-030-56341-7

  29. Ern, A., Guermond, J.-L.: Mollification in strongly Lipschitz domains with application to continuous and discrete de Rham complexes. Comput. Methods Appl. Math. 16(1), 51–75 (2016). https://doi.org/10.1515/cmam-2015-0034

    Article  MathSciNet  Google Scholar 

  30. Ern, A., Vohralík, M.: Stable broken \(H^1\) and \({\varvec {H}}({\rm div})\) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions. Math. Comp. 89(322), 551–594 (2020). https://doi.org/10.1090/mcom/3482

    Article  MathSciNet  Google Scholar 

  31. Falk, R.S., Winther, R.: Local bounded cochain projections. Math. Comp. 83(290), 2631–2656 (2014). https://doi.org/10.1090/S0025-5718-2014-02827-5

    Article  MathSciNet  Google Scholar 

  32. Fernandes, P., Gilardi, G.: Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7(7), 957–991 (1997). https://doi.org/10.1142/S0218202597000487

    Article  MathSciNet  Google Scholar 

  33. Gallistl, D., Henning, P., Verfürth, B.: Numerical homogenization of \({H}(\rm curl)\)-problems. SIAM J. Numer. Anal. 56(3), 1570–1596 (2018). https://doi.org/10.1137/17M1133932

    Article  MathSciNet  Google Scholar 

  34. Gawlik, E., Holst, M.J., Licht, M.W.: Local finite element approximation of Sobolev differential forms. ESAIM Math. Model. Numer. Anal. 55(5), 2075–2099 (2021). https://doi.org/10.1051/m2an/2021034

    Article  MathSciNet  Google Scholar 

  35. Gedicke, J., Geevers, S., Perugia, I., Schöberl, J.: A polynomial-degree-robust a posteriori error estimator for Nédélec discretizations of magnetostatic problems. SIAM J. Numer. Anal. 59(4), 2237–2253 (2021). https://doi.org/10.1137/20M1333365

    Article  MathSciNet  Google Scholar 

  36. Gedicke, J., Geevers, S., Perugia, I.: An equilibrated a posteriori error estimator for arbitrary-order Nédélec elements for magnetostatic problems. J. Sci. Comput. 83(3), 58–23 (2020). https://doi.org/10.1007/s10915-020-01224-x

    Article  Google Scholar 

  37. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Springer Series in Computational Mathematics, vol. 5, p. 374. Springer, Berlin (1986)

  38. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, vol. 24, p. 410. Pitman (Advanced Publishing Program), Boston (1985)

  39. Hiptmair, R., Pechstein, C.: Discrete regular decompositions of tetrahedral discrete 1-forms. In: Langer, U., Pauly, D., Repin, S. (eds.) Maxwell’s Equations, Chap. 7, pp. 199–258. De Gruyter, Berlin (2019). https://doi.org/10.1515/9783110543612-007

  40. Melenk, J.M., Rojik, C.: On commuting \(p\)-version projection-based interpolation on tetrahedra. Math. Comp. 89(321), 45–87 (2020). https://doi.org/10.1090/mcom/3454

    Article  MathSciNet  Google Scholar 

  41. Monk, P.: On the \(p\)- and \(hp\)-extension of Nédélec’s curl-conforming elements. J. Comput. Appl. Math. 53(1), 117–137 (1994). https://doi.org/10.1016/0377-0427(92)00127-U

    Article  MathSciNet  Google Scholar 

  42. Nédélec, J.-C.: Mixed finite elements in \({\mathbb{R} }^{3}\). Numer. Math. 35(3), 315–341 (1980)

    Article  MathSciNet  Google Scholar 

  43. Payne, L.E., Weinberger, H.F.: An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5, 286–292 (1960)

    Article  Google Scholar 

  44. Raviart, P.-A., Thomas, J.-M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods (Proceedings of Conference on Consiglio Nazionale delle Ricerche (C.N.R.), Rome, 1975), pp. 292–315606. Springer, Berlin (1977)

  45. Suri, M.: On the stability and convergence of higher-order mixed finite element methods for second-order elliptic problems. Math. Comp. 54(189), 1–19 (1990). https://doi.org/10.2307/2008679

    Article  MathSciNet  Google Scholar 

  46. Veeser, A.: Approximating gradients with continuous piecewise polynomial functions. Found. Comput. Math. 16(3), 723–750 (2016). https://doi.org/10.1007/s10208-015-9262-z

    Article  MathSciNet  Google Scholar 

  47. Vohralík, M.: On the discrete Poincaré-Friedrichs inequalities for nonconforming approximations of the Sobolev space \(H^1\). Numer. Funct. Anal. Optim. 26(7–8), 925–952 (2005). https://doi.org/10.1080/01630560500444533

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No 647134 GATIPOR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Vohralík.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

p-robust equivalence of constrained and unconstrained best-approximation in \(\varvec{H}(\textrm{curl})\) on a tetrahedron

In this Appendix, we extend [16, Lemma 1] to functions \(\varvec{v}\) with nonpolynomial curl, in the spirit of [26, Lemma A1]. This is a consequence of the breakthrough result of Costabel and McIntosh in [20, Proposition 4.2]. Interestingly enough, the constant hidden in the inequality is here independent of the polynomial degree p.

Lemma 10

(Equivalence of constrained and unconstrained best-approximation on a tetrahedron) Let a polynomial degree \(p \ge 0\), a tetrahedron \({K}\), and an arbitrary \(\varvec{v}\in \varvec{H}(\textrm{curl}, {K})\) be fixed. Let

$$\begin{aligned} \varvec{\tau }_h :=\arg \min _{\begin{array}{c} \varvec{w}_h \in \varvec{\mathcal {R\hspace{-0.1em}T}}\hspace{-0.25em}_p({K})\\ \nabla {\cdot }\varvec{w}_h = 0 \end{array}} \Vert \nabla {\times }\varvec{v}- \varvec{w}_h\Vert _{K}. \end{aligned}$$
(A.1)

Then

$$\begin{aligned} \begin{aligned} \min _{\varvec{v}_h \in \varvec{\mathcal {N}}\hspace{-0.2em}_p({K})}\Vert \varvec{v}- \varvec{v}_h\Vert _{K}&\le \min _{\begin{array}{c} \varvec{v}_h \in \varvec{\mathcal {N}}\hspace{-0.2em}_p({K})\\ \nabla {\times }\varvec{v}_h = \varvec{\tau }_h \end{array}} \Vert \varvec{v}- \varvec{v}_h\Vert _{K}\\&\lesssim \Big (\min _{\varvec{v}_h \in \varvec{\mathcal {N}}\hspace{-0.2em}_p({K})}\Vert \varvec{v}- \varvec{v}_h\Vert _{K}+ \frac{h_{{K}}}{p+1}\big \Vert \nabla {\times }\varvec{v}- \varvec{\Pi }_{\varvec{\mathcal {R\hspace{-0.1em}T}}}^{p}(\nabla {\times }\varvec{v})\big \Vert _{K}\Big ), \end{aligned}\nonumber \\ \end{aligned}$$
(A.2)

where the hidden constant only depends on the shape-regularity \(\kappa _{K}:=h_{K}/ \rho _{K}\) of \({K}\).

Proof

The first inequality is obvious, since the second minimization set has an additional curl constraint. In order to show the second one, denote respectively by

$$\begin{aligned} \varvec{\iota }_h :=\arg \min _{\begin{array}{c} \varvec{v}_h \in \varvec{\mathcal {N}}\hspace{-0.2em}_p({K})\\ \nabla {\times }\varvec{v}_h = \varvec{\tau }_h \end{array}} \Vert \varvec{v}- \varvec{v}_h\Vert _{K}\end{aligned}$$
(A.3)

and

$$\begin{aligned} {\tilde{\varvec{\iota }}}_h :=\arg \min _{\varvec{v}_h \in \varvec{\mathcal {N}}\hspace{-0.2em}_p({K})} \Vert \varvec{v}- \varvec{v}_h\Vert _{K}\end{aligned}$$
(A.4)

the constrained and unconstrained minimizers. We then need to show

$$\begin{aligned} \Vert \varvec{v}- \varvec{\iota }_h\Vert _{K}\lesssim \Vert \varvec{v}- {\widetilde{\varvec{\iota }}}_h\Vert _{K}+ \frac{h_{{K}}}{p+1}\big \Vert \nabla {\times }\varvec{v}- \varvec{\Pi }_{\varvec{\mathcal {R\hspace{-0.1em}T}}}^{p}(\nabla {\times }\varvec{v})\big \Vert _{K}, \end{aligned}$$
(A.5)

where \(\lesssim \) means inequality up to a constant only depending on the shape-regularity \(\kappa _{K}\).

Using (A.1) and (4.2), \(\varvec{\tau }_h - \nabla {\times }{\tilde{\varvec{\iota }}}_h \in \{\varvec{w}_h \in \varvec{\mathcal {R\hspace{-0.1em}T}}\hspace{-0.25em}_p({K}); \, \nabla {\cdot }\varvec{w}_h = 0\}\). Thus, we can use [20, Proposition 4.2], cf. also the reformulation in [12, Theorem 2], stipulating the existence of \(\varvec{\varphi }_h \in \varvec{\mathcal {N}}\hspace{-0.2em}_p({K})\) with \(\nabla {\times }\varvec{\varphi }_h = \varvec{\tau }_h - \nabla {\times }{\tilde{\varvec{\iota }}}_h\) such that

$$\begin{aligned} \Vert \varvec{\varphi }_h\Vert _{K}\lesssim \min _{\begin{array}{c} \varvec{\varphi }\in \varvec{H}(\textrm{curl}, {K})\\ \nabla {\times }\varvec{\varphi }= \varvec{\tau }_h - \nabla {\times }{\tilde{\varvec{\iota }}}_h \end{array}} \Vert \varvec{\varphi }\Vert _{K}. \end{aligned}$$
(A.6)

Shifting now the right-hand side of (A.6) by \({\tilde{\varvec{\iota }}}_h\), we arrive at

$$\begin{aligned} \Vert \varvec{\varphi }_h\Vert _{K}\lesssim \min _{\begin{array}{c} \varvec{\varphi }\in \varvec{H}(\textrm{curl}, {K})\\ \nabla {\times }\varvec{\varphi }= \varvec{\tau }_h \end{array}} \Vert \varvec{\varphi }- {\tilde{\varvec{\iota }}}_h\Vert _{K}. \end{aligned}$$

A primal–dual equivalence as in, e.g., [13, Lemma 5.5] implies (as in Sect. 2.3, \(\varvec{H}_0(\textrm{curl}, {K})\) is composed of those \(\varvec{\varphi }\in \varvec{H}(\textrm{curl}, {K})\) that verify \(\varvec{\varphi }{\times }\varvec{n}_{K}=0\) on \(\partial {K}\) in the weak sense (2.3))

$$\begin{aligned} \min _{\begin{array}{c} \varvec{\varphi }\in \varvec{H}(\textrm{curl}, {K})\\ \nabla {\times }\varvec{\varphi }= \varvec{\tau }_h \end{array}} \Vert \varvec{\varphi }- {\tilde{\varvec{\iota }}}_h\Vert _{K}= &\sup _{\begin{array}{c} \varvec{\varphi }\in \varvec{H}_0(\textrm{curl}, {K})\\ \Vert \nabla {\times }\varvec{\varphi }\Vert _{K}= 1 \end{array}} \big \{(\varvec{\tau }_h, \varvec{\varphi })_{K}- ({\tilde{\varvec{\iota }}}_h, \nabla {\times }\varvec{\varphi })_{K}\big \} \\ \le &\sup _{\begin{array}{c} \varvec{\varphi }\in \varvec{H}_0(\textrm{curl}, {K})\\ \Vert \nabla {\times }\varvec{\varphi }\Vert _{K}= 1 \end{array}} \big \{(\nabla {\times }\varvec{v}, \varvec{\varphi })_{K}- ({\tilde{\varvec{\iota }}}_h, \nabla {\times }\varvec{\varphi })_{K}\big \} \\ &+ \sup _{\begin{array}{c} \varvec{\varphi }\in \varvec{H}_0(\textrm{curl}, {K})\\ \Vert \nabla {\times }\varvec{\varphi }\Vert _{K}= 1 \end{array}} (\varvec{\tau }_h - \nabla {\times }\varvec{v}, \varvec{\varphi })_{K}\\ \lesssim &\min _{\begin{array}{c} \varvec{\varphi }\in \varvec{H}(\textrm{curl}, {K})\\ \nabla {\times }\varvec{\varphi }= \nabla {\times }\varvec{v} \end{array}} \Vert \varvec{\varphi }- {\tilde{\varvec{\iota }}}_h\Vert _{K}+ \frac{h_{{K}}}{p+1}\big \Vert \nabla {\times }\varvec{v}- \varvec{\Pi }_{\varvec{\mathcal {R\hspace{-0.1em}T}}}^{p}(\nabla {\times }\varvec{v})\big \Vert _{K}, \end{aligned}$$

where, to estimate the second term on the middle line, we have used the technical result of Lemma 11 below.

Consequently, since \(\varvec{v}\in \varvec{H}(\textrm{curl}, {K})\) satisfies the curl constraint above,

$$\begin{aligned} \Vert \varvec{\varphi }_h\Vert _{K}\lesssim \Vert \varvec{v}- {\tilde{\varvec{\iota }}}_h\Vert _{K}+ \frac{h_{{K}}}{p+1}\big \Vert \nabla {\times }\varvec{v}- \varvec{\Pi }_{\varvec{\mathcal {R\hspace{-0.1em}T}}}^{p}(\nabla {\times }\varvec{v})\big \Vert _{K}. \end{aligned}$$
(A.7)

Now note that \((\varvec{\varphi }_h + {\tilde{\varvec{\iota }}}_h) \in \varvec{\mathcal {N}}\hspace{-0.2em}_p({K})\) with \(\nabla {\times }(\varvec{\varphi }_h + {\tilde{\varvec{\iota }}}_h) = \varvec{\tau }_h\). Thus, \(\varvec{\varphi }_h + {\tilde{\varvec{\iota }}}_h\) belongs to the minimization set in (A.3), and the minimization property (A.3) of \(\varvec{\iota }_h\) implies \(\Vert \varvec{v}- \varvec{\iota }_h\Vert _{K}\le \Vert \varvec{v}- (\varvec{\varphi }_h + {\tilde{\varvec{\iota }}}_h)\Vert _{K}\). Thus, by virtue of the triangle inequality and using (A.7), we altogether infer

$$\begin{aligned} \Vert \varvec{v}- \varvec{\iota }_h\Vert _{K}&\le \Vert \varvec{v}- (\varvec{\varphi }_h + {\tilde{\varvec{\iota }}}_h)\Vert _{K}\le \Vert \varvec{v}- {\tilde{\varvec{\iota }}}_h\Vert _{K}+ \Vert \varvec{\varphi }_h\Vert _{K}\\&\lesssim \Vert \varvec{v}- {\tilde{\varvec{\iota }}}_h\Vert _{K}+ \frac{h_{{K}}}{p+1}\big \Vert \nabla {\times }\varvec{v}- \varvec{\Pi }_{\varvec{\mathcal {R\hspace{-0.1em}T}}}^{p}(\nabla {\times }\varvec{v})\big \Vert _{K}, \end{aligned}$$

i.e., (A.5), and the proof is finished. \(\square \)

Lemma 11

(hp data oscillation) Let the assumptions of Lemma 10 be verified. Then

$$\begin{aligned} \sup _{\begin{array}{c} \varvec{\varphi }\in \varvec{H}_0(\textrm{curl}, {K})\\ \Vert \nabla {\times }\varvec{\varphi }\Vert _{K}= 1 \end{array}} (\varvec{\tau }_h - \nabla {\times }\varvec{v}, \varvec{\varphi })_{K}\lesssim \frac{h_{{K}}}{p+1}\big \Vert \nabla {\times }\varvec{v}- \varvec{\Pi }_{\varvec{\mathcal {R\hspace{-0.1em}T}}}^{p}(\nabla {\times }\varvec{v})\big \Vert _{K}, \end{aligned}$$

where the hidden constant only depends on the shape-regularity \(\kappa _{K}:=h_{K}/ \rho _{K}\) of \({K}\).

Proof

Fix \(\varvec{\varphi }\in \varvec{H}_0(\textrm{curl}, {K})\) with \(\Vert \nabla {\times }\varvec{\varphi }\Vert _{K}= 1\). From (2.15), there exists \(\varvec{\psi }\in {\varvec{H}}^1({K}) \cap \varvec{H}_0(\textrm{curl}, {K})\) such that \(\nabla {\times }\varvec{\psi }= \nabla {\times }\varvec{\varphi }\) and

$$\begin{aligned} \Vert \nabla \varvec{\psi }\Vert _{K}\le \Vert \nabla {\times }\varvec{\varphi }\Vert _{K}= 1. \end{aligned}$$

Since \(\varvec{\tau }_h \in \varvec{\mathcal {R\hspace{-0.1em}T}}\hspace{-0.25em}_p({K})\) with \(\nabla {\cdot }\varvec{\tau }_h = 0\), there exists \(\varvec{w}_h \in \varvec{\mathcal {N}}\hspace{-0.2em}_p({K})\) such that \(\nabla {\times }\varvec{w}_h = \varvec{\tau }_h\). Thus, by the Green theorem,

$$\begin{aligned} (\varvec{\tau }_h - \nabla {\times }\varvec{v}, \varvec{\varphi })_{K}&= (\nabla {\times }(\varvec{w}_h - \varvec{v}), \varvec{\varphi })_{K}= (\varvec{w}_h - \varvec{v}, \nabla {\times }\varvec{\varphi })_{K}\\&= (\varvec{w}_h - \varvec{v}, \nabla {\times }\varvec{\psi })_{K}= (\varvec{\tau }_h - \nabla {\times }\varvec{v}, \varvec{\psi })_{K}, \end{aligned}$$

and we conclude by the following Lemma 12. \(\square \)

Lemma 12

(hp data estimate) Let the assumptions of Lemma 10 be verified. Let \(\varvec{\psi }\in {\varvec{H}}^1({K})\). Then

$$\begin{aligned} \vert (\varvec{\tau }_h - \nabla {\times }\varvec{v}, \varvec{\psi })_{K}\vert \lesssim \frac{h_{{K}}}{p+1}\big \Vert \nabla {\times }\varvec{v}- \varvec{\Pi }_{\varvec{\mathcal {R\hspace{-0.1em}T}}}^{p}(\nabla {\times }\varvec{v})\big \Vert _{K}\Vert \nabla \varvec{\psi }\Vert _{K}, \end{aligned}$$

where the hidden constant only depends on the shape-regularity \(\kappa _{K}:=h_{K}/ \rho _{K}\) of \({K}\).

Proof

Let \(q \in H^1_0({K})\) be such that

$$\begin{aligned} (\nabla q, \nabla v)_{K}= (\varvec{\psi }, \nabla v)_{K}\qquad \forall v \in H^1_0({K}). \end{aligned}$$
(A.8)

Defining \(\varvec{\chi }:=\varvec{\psi }- \nabla q\), we have

$$\begin{aligned} \varvec{\chi }\in \varvec{H}(\textrm{div},{K}) \text { with } \nabla {\cdot }\varvec{\chi }= 0. \end{aligned}$$
(A.9)

Moreover, by the Green theorem, the right-hand side in (A.8) can be equivalently written as \((\varvec{\psi }, \nabla v)_{K}= - (\nabla {\cdot }\varvec{\psi }, v)_{K}\). Thus, since \({K}\) is convex, the elliptic regularity shift, see, e.g., [38, Chapter 3], gives \(q \in H^2({K})\) with

$$\begin{aligned} \Vert \nabla (\nabla q)\Vert _{K}\lesssim \Vert \nabla {\cdot }\varvec{\psi }\Vert _{K}\le \Vert \nabla \varvec{\psi }\Vert _{K}, \end{aligned}$$

where \(\lesssim \) means inequality up to a constant only depending on the shape-regularity \(\kappa _{K}\). Thus, in addition to (A.9), there also holds \(\varvec{\chi }\in {\varvec{H}}^1({K})\) with

$$\begin{aligned} \Vert \nabla \varvec{\chi }\Vert _{K}\le \Vert \nabla \varvec{\psi }\Vert _{K}+ \Vert \nabla (\nabla q)\Vert _{K}\lesssim \Vert \nabla \varvec{\psi }\Vert _{K}. \end{aligned}$$
(A.10)

Now, since from (A.1) \(\varvec{\tau }_h - \nabla {\times }\varvec{v}\in \varvec{H}(\textrm{div},{K})\) with \(\nabla {\cdot }(\varvec{\tau }_h - \nabla {\times }\varvec{v}) = 0\), there follows by the Green theorem

$$\begin{aligned} (\varvec{\tau }_h - \nabla {\times }\varvec{v}, \nabla q)_{K}= 0. \end{aligned}$$

Consequently,

$$\begin{aligned} (\varvec{\tau }_h - \nabla {\times }\varvec{v}, \varvec{\psi })_{K}= (\varvec{\tau }_h - \nabla {\times }\varvec{v}, \varvec{\chi })_{K}. \end{aligned}$$
(A.11)

Let respectively

$$\begin{aligned} \varvec{\chi }_h :=\arg \min _{\begin{array}{c} \varvec{w}_h \in \varvec{\mathcal {R\hspace{-0.1em}T}}\hspace{-0.25em}_p({K})\\ \nabla {\cdot }\varvec{w}_h = 0 \end{array}} \Vert \varvec{\chi }- \varvec{w}_h\Vert _{K}\end{aligned}$$

and

$$\begin{aligned} {\tilde{\varvec{\chi }}}_h :=\arg \min _{\varvec{w}_h \in \varvec{\mathcal {R\hspace{-0.1em}T}}\hspace{-0.25em}_p({K})} \Vert \varvec{\chi }- \varvec{w}_h\Vert _{K}\end{aligned}$$

be the constrained and unconstrained Raviart–Thomas approximations of \(\varvec{\chi }\). The Euler–Lagrange conditions of (A.1) allow us to subtract \(\varvec{\chi }_h\) (but not \({\tilde{\varvec{\chi }}}_h\)) in (A.11), so that the Cauchy–Schwarz inequality and, crucially, the p-robust constrained–unconstrained \(\varvec{H}(\textrm{div})\) equivalence of [26, Lemma A1] (note that \(\nabla {\cdot }\varvec{\chi }= 0\)) lead to

$$\begin{aligned} \begin{aligned} (\varvec{\tau }_h - \nabla {\times }\varvec{v}, \varvec{\chi })_{K}&= (\varvec{\tau }_h - \nabla {\times }\varvec{v}, \varvec{\chi }- \varvec{\chi }_h)_{K}\le \Vert \varvec{\tau }_h - \nabla {\times }\varvec{v}\Vert _{K}\Vert \varvec{\chi }- \varvec{\chi }_h\Vert _{K}\\&\lesssim \Vert \varvec{\tau }_h - \nabla {\times }\varvec{v}\Vert _{K}\Vert \varvec{\chi }- {\tilde{\varvec{\chi }}}_h\Vert _{K}. \end{aligned} \end{aligned}$$
(A.12)

Now, since \(\varvec{\mathcal {R\hspace{-0.1em}T}}\hspace{-0.25em}_p({K})\) contains by (2.9) polynomials up to degree p in each component and since the minimization for \({\tilde{\varvec{\chi }}}_h\) is unconstrained, the hp approximation bound (2.17) gives

$$\begin{aligned} \Vert \varvec{\chi }- {\tilde{\varvec{\chi }}}_h\Vert _{K}\lesssim \frac{h_{{K}}}{p+1} \Vert \nabla \varvec{\chi }\Vert _{K}. \end{aligned}$$
(A.13)

Finally, in addition to (A.1), let

$$\begin{aligned} {\tilde{\varvec{\tau }}}_h :=\arg \min _{\varvec{w}_h \in \varvec{\mathcal {R\hspace{-0.1em}T}}\hspace{-0.25em}_p({K})} \Vert \nabla {\times }\varvec{v}- \varvec{w}_h\Vert _{K}, \end{aligned}$$

i.e., from (2.11b), \({\tilde{\varvec{\tau }}}_h = \varvec{\Pi }_{\varvec{\mathcal {R\hspace{-0.1em}T}}}^{p}(\nabla {\times }\varvec{v})\). It follows once again from the p-robust constrained–unconstrained \(\varvec{H}(\textrm{div})\) equivalence of [26, Lemma A1] (note that \(\nabla {\cdot }(\nabla {\times }\varvec{v}) = 0\)) that

$$\begin{aligned} \Vert \varvec{\tau }_h - \nabla {\times }\varvec{v}\Vert _{K}\lesssim \Vert {\tilde{\varvec{\tau }}}_h - \nabla {\times }\varvec{v}\Vert _{K}= \big \Vert \nabla {\times }\varvec{v}- \varvec{\Pi }_{\varvec{\mathcal {R\hspace{-0.1em}T}}}^{p}(\nabla {\times }\varvec{v})\big \Vert _{K}. \end{aligned}$$
(A.14)

Thus, the desired result is a combination of (A.11), (A.12), (A.13), and (A.14) together with (A.10). \(\square \)

Broken regular decomposition in a patch

Let \({\mathcal {T}_{{\varvec{a}}}}\) be a vertex patch for a mesh vertex \({\varvec{a}}\in \mathcal {V}_h\) as in Sect. 2.2. Recall the local spaces (2.6) and (2.7), including the notation \({\gamma _{\mathrm D}}\) standing for the faces sharing the vertex \({\varvec{a}}\) and lying in \({\overline{{\Gamma _{\mathrm D}}}}\). Then there holds:

Lemma 13

(Broken regular decomposition in a patch) Let \(\varvec{\varphi }\in \varvec{H}^\dagger (\textrm{curl}, {\omega _{\varvec{a}}})\). Then there exists \(\varvec{\psi }\in \varvec{H}^\dagger (\textrm{curl}, {\omega _{\varvec{a}}})\) with

$$\begin{aligned} \varvec{\psi }\vert _{K}\in {\varvec{H}}^1({K}) \qquad \forall {K}\in {\mathcal {T}_{{\varvec{a}}}}\end{aligned}$$
(B.1a)

such that

$$\begin{aligned} \nabla {\times }\varvec{\psi }= \nabla {\times }\varvec{\varphi }\end{aligned}$$
(B.1b)

and

$$\begin{aligned} \Vert \varvec{\psi }\Vert _{\omega _{\varvec{a}}}&\lesssim h_{\omega _{\varvec{a}}}\Vert \nabla {\times }\varvec{\varphi }\Vert _{\omega _{\varvec{a}}}, \end{aligned}$$
(B.1c)
$$\begin{aligned} \Bigg \{\sum _{{K}\in {\mathcal {T}_{{\varvec{a}}}}} \Vert \nabla \varvec{\psi }\Vert _{K}^2 \Bigg \}^{1/2}&\lesssim \Vert \nabla {\times }\varvec{\varphi }\Vert _{\omega _{\varvec{a}}}, \end{aligned}$$
(B.1d)

where the hidden constants only depend on the shape-regularity parameter \(\kappa _{{\mathcal {T}_h}}\) of the mesh \({\mathcal {T}_h}\).

Proof

Our proof involves a reference patch. For a fixed shape-regularity parameter \(\kappa _{{\mathcal {T}_h}}\), there is a maximal number of tetrahedra \(\vert {\mathcal {T}_{{\varvec{a}}}}\vert \) in each vertex patch \({\mathcal {T}_{{\varvec{a}}}}\). Therefore, there exists a finite number of ways these tetrahedra can be connected together in the patch, and we may, for each value of \(\kappa _{{\mathcal {T}_h}}\), define a finite set \(R \) of reference patches of unit diameter in such a way that each vertex patch \({\mathcal {T}_{{\varvec{a}}}}\) in the mesh is the image of an element \(\widetilde{\mathcal {T}} \in R \) through a piecewise affine map that preserves connectivity.

Let \(\widetilde{\mathcal {T}} \in R \) be the reference patch associated with the given \({\mathcal {T}_{{\varvec{a}}}}\), and denote by \({\mathcal {A}}: {\widetilde{\omega }} \rightarrow {\omega _{\varvec{a}}}\) the corresponding piecewise affine map, where \({\widetilde{\omega }}\) is the open subdomain corresponding to \(\widetilde{\mathcal {T}}\). Then, for each \({K}\in {\mathcal {T}_{{\varvec{a}}}}\), we denote by

$$\begin{aligned} \big ({\mathcal {A}}^{\textrm{c}} \varvec{v}\big )\vert _{K}:={\mathbb {J}}^{\mathrm{-T}}_{{K}} \varvec{v}\circ {\mathcal {A}}^{-1}, \qquad \big ({\mathcal {A}}^{\textrm{d}} \varvec{v}\big )\vert _{K}:=(\det {\mathbb {J}}_{{K}})^{-1} {\mathbb {J}}_{{K}} \varvec{v}\circ {\mathcal {A}}^{-1}, \end{aligned}$$
(B.2)

the curl- and divergence-preserving Piola mappings associated with \({\mathcal {A}}\), where \({\mathbb {J}}_{{K}}\) is the (constant) Jacobian matrix of \({\mathcal {A}}\) on \({K}\), see e.g. [28, Section 7.2]. It is standard that \({\mathcal {A}}^{\textrm{c}}\) maps \(\varvec{H}^\dagger (\textrm{curl}, {\widetilde{\omega }})\) into \(\varvec{H}^\dagger (\textrm{curl}, {\omega _{\varvec{a}}})\), where \(\varvec{H}^\dagger (\textrm{curl}, {\widetilde{\omega }})\) embeds essential boundary conditions on \({\mathcal {A}}^{-1}({\gamma _{\mathrm D}})\). \({\mathcal {A}}^{\textrm{c}}\) and \({\mathcal {A}}^{\textrm{d}}\) are bijective, and we denote by \(({\mathcal {A}}^{\textrm{c}})^{-1}\) and \(({\mathcal {A}}^{\textrm{d}})^{-1}\) their inverses. Finally, we have the commuting property \(\nabla {\times }({\mathcal {A}}^{\textrm{c}} \cdot ) = {\mathcal {A}}^{\textrm{d}}(\nabla {\times }\cdot )\).

Consider \(\varvec{\varphi }\in \varvec{H}^\dagger (\textrm{curl}, {\omega _{\varvec{a}}})\) and let \({\widetilde{\varvec{\varphi }}} :=({\mathcal {A}}^{\textrm{c}})^{-1}(\varvec{\varphi }) \in \varvec{H}^\dagger (\textrm{curl}, {\widetilde{\omega }})\). We can employ (2.15) (where we take \(\varvec{w}\) in \({\varvec{H}}^1_{0,\textrm{D}}(\omega )\)) on the reference patch \({\widetilde{\omega }}\), where \(C_{\textrm{L},{\widetilde{\omega }}}\) is now a generic constant only depending on \(\kappa _{{\mathcal {T}_h}}\) due to the above discussion. Therefore, there exists \({\widetilde{\varvec{\psi }}} \in {\varvec{H}}^1({\widetilde{\omega }})\), with \({\widetilde{\varvec{\psi }}} = 0\) on \({\mathcal {A}}^{-1}({\gamma _{\mathrm D}})\) if \({\gamma _{\mathrm D}}\) includes at least one face and of componentwise mean value zero on \({\widetilde{\omega }}\) otherwise such that

$$\begin{aligned} \nabla {\times }{\widetilde{\varvec{\psi }}} = \nabla {\times }{\widetilde{\varvec{\varphi }}} \quad \text { and } \quad \quad \Vert \nabla {\widetilde{\varvec{\psi }}}\Vert _{{\widetilde{\omega }}} \le C_{\textrm{L},{\widetilde{\omega }}} \Vert \nabla {\times }{\widetilde{\varvec{\varphi }}}\Vert _{{\widetilde{\omega }}}. \end{aligned}$$

We also note that we have

$$\begin{aligned} \Vert {\widetilde{\varvec{\psi }}}\Vert _{{\widetilde{\omega }}} \lesssim \Vert \nabla {\widetilde{\varvec{\psi }}}\Vert _{{\widetilde{\omega }}} \lesssim \Vert \nabla {\times }{\widetilde{\varvec{\psi }}}\Vert _{{\widetilde{\omega }}} = \Vert \nabla {\times }{\widetilde{\varvec{\varphi }}}\Vert _{{\widetilde{\omega }}} \end{aligned}$$
(B.3)

by the Poincaré–Friedrichs inequality (2.16), since \({\widetilde{\omega }}\) is of unit diameter.

We then introduce \(\varvec{\psi }:={\mathcal {A}}^{\textrm{c}}({\widetilde{\varvec{\psi }}}) \in \varvec{H}^\dagger (\textrm{curl}, {\omega _{\varvec{a}}})\) and claim that it satisfies all the requirements in (B.1). Indeed, elementwise, the Piola mapping \({\mathcal {A}}^{\textrm{c}}\) amounts to an affine change of coordinates and a multiplication by a constant matrix. Therefore, it is clear that it preserves smoothness elementwise and (B.1a) follows from \({\widetilde{\varvec{\psi }}} \in {\varvec{H}}^1({\widetilde{\omega }})\). Moreover, (B.1b) holds true since

$$\begin{aligned} \nabla {\times }\varvec{\psi }&= \nabla {\times }{\mathcal {A}}^{\textrm{c}}({\widetilde{\varvec{\psi }}}) = {\mathcal {A}}^{\textrm{d}}(\nabla {\times }{\widetilde{\varvec{\psi }}}) = {\mathcal {A}}^{\textrm{d}}(\nabla {\times }{\widetilde{\varvec{\varphi }}}) = {\mathcal {A}}^{\textrm{d}}(\nabla {\times }(({\mathcal {A}}^{\textrm{c}})^{-1}(\varvec{\varphi })))\\&={\mathcal {A}}^{\textrm{d}}(({\mathcal {A}}^{\textrm{d}})^{-1}(\nabla {\times }\varvec{\varphi })) =\nabla {\times }\varvec{\varphi }. \end{aligned}$$

The estimates (B.1c) and (B.1d) then follow from (B.3) and the usual scaling arguments due to the structure (B.2) of the Piola mappings. Indeed, for each \({K}\in {\mathcal {T}_{{\varvec{a}}}}\), we have, on the one hand,

$$\begin{aligned} \Vert \varvec{\psi }\Vert _{{K}}^2&= \Vert {\mathcal {A}}^{\textrm{c}}({\widetilde{\varvec{\psi }}})\Vert _{{K}}^2 = \Vert {\mathbb {J}}_{K}^{-T}{\widetilde{\varvec{\psi }}} \circ {\mathcal {A}}^{-1}\Vert _{{K}}^2\\&\lesssim h_{K}^{-2} \Vert {\widetilde{\varvec{\psi }}} \circ {\mathcal {A}}^{-1}\Vert _{K}^2 \lesssim h_{K}^{-2} \vert {K}\vert \Vert {\widetilde{\varvec{\psi }}}\Vert _{{\widetilde{{K}}}}^2 \lesssim h_{K}\Vert {\widetilde{\varvec{\psi }}}\Vert _{{\widetilde{{K}}}}^2, \end{aligned}$$

where \({\widetilde{{K}}} = {\mathcal {A}}^{-1}({K})\). On the other hand, it is true that

$$\begin{aligned} \begin{aligned} \Vert \nabla {\times }{\widetilde{\varvec{\psi }}}\Vert _{{\widetilde{{K}}}}^2&= \Vert ({\mathcal {A}}^{\textrm{d}})^{-1}(\nabla {\times }\varvec{\psi })\Vert _{{\widetilde{{K}}}}^2 = \Vert (\det {\mathbb {J}}_{{K}}) {\mathbb {J}}_{K}^{-1} (\nabla {\times }\varvec{\psi }) \circ {\mathcal {A}}\Vert _{{\widetilde{{K}}}}^2\\&\lesssim (\det {\mathbb {J}}_{K})^2 h_{K}^{-2} \Vert (\nabla {\times }\varvec{\psi }) \circ {\mathcal {A}}\Vert _{{\widetilde{{K}}}}^2 \lesssim \frac{(\det {\mathbb {J}}_{K})^2 h_{K}^{-2}}{\vert {K}\vert } \Vert \nabla {\times }\varvec{\psi }\Vert _{{K}}^2\\&\lesssim h_{K}\Vert \nabla {\times }\varvec{\psi }\Vert _{K}^2, \end{aligned} \end{aligned}$$
(B.4)

so that (B.1c) follows from (B.3).

Finally, we establish (B.1d) by directly differentiating in (B.2). Specifically, we have

$$\begin{aligned} \partial _\ell \varvec{\psi }={\mathbb {J}}_{K}^{-T} \partial _\ell ({\widetilde{\varvec{\psi }}} \circ {\mathcal {A}}^{-1}) ={\mathbb {J}}_{K}^{-T} \partial _\ell ({\mathcal {A}}^{-1}_j) (\partial _j{\widetilde{\varvec{\psi }}} \circ {\mathcal {A}}^{-1}), \end{aligned}$$

so that

$$\begin{aligned} \vert \partial _\ell \varvec{\psi }\vert \le h_{K}^{-2} \vert \nabla {\widetilde{\varvec{\psi }}} \circ {\mathcal {A}}^{-1}\vert \end{aligned}$$

and

$$\begin{aligned} \Vert \partial _\ell \varvec{\psi }\Vert _{K}^2 \lesssim h^{-4}_{K}\vert {K}\vert \Vert \nabla {\widetilde{\varvec{\psi }}}\Vert _{{\widetilde{{K}}}}^2. \end{aligned}$$

We therefore arrive at

$$\begin{aligned} \sum _{{K}\in {\mathcal {T}_{{\varvec{a}}}}} \Vert \nabla \varvec{\psi }\Vert _{{K}}^2 \lesssim h_{{\omega _{\varvec{a}}}}^{-1}\Vert \nabla {\widetilde{\varvec{\psi }}}\Vert _{{\widetilde{\omega }}}^2, \end{aligned}$$

and the conclusion follows from (B.3) and (B.4). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaumont-Frelet, T., Vohralík, M. A stable local commuting projector and optimal hp approximation estimates in \(\varvec{H}(\textrm{curl})\). Numer. Math. 156, 2293–2342 (2024). https://doi.org/10.1007/s00211-024-01431-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-024-01431-w

Navigation