[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The local discontinuous Galerkin method for a singularly perturbed convection–diffusion problem with characteristic and exponential layers

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A singularly perturbed convection–diffusion problem, posed on the unit square in \({\mathbb {R}}^2\), is studied; its solution has both exponential and characteristic boundary layers. The problem is solved numerically using the local discontinuous Galerkin (LDG) method on Shishkin meshes. Using tensor-product piecewise polynomials of degree at most \(k>0\) in each variable, the error between the LDG solution and the true solution is proved to converge, uniformly in the singular perturbation parameter, at a rate of \(O\left( \left( N^{-1}\ln N\right) ^{k+1/2}\right) \) in an associated energy norm, where N is the number of mesh intervals in each coordinate direction. (This is the first uniform convergence result proved for the LDG method applied to a problem with characteristic boundary layers.) Furthermore, we prove that this order of convergence increases to \(O\left( \left( N^{-1}\ln N\right) ^{k+1}\right) \) when one measures the energy-norm difference between the LDG solution and a local Gauss-Radau projection of the true solution into the finite element space. This uniform supercloseness property implies an optimal \(L^2\) error estimate of order \(\left( N^{-1}\ln N\right) ^{k+1}\) for our LDG method. Numerical experiments show the sharpness of our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Andreev, V.B.: Pointwise approximation of corner singularities for singularly perturbed elliptic problems with characteristic layers. Int. J. Numer. Anal. Model. 7(3), 416–427 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Brdar, M., Radojev, G., Roos, H.-G., Teofanov, Lj.: Superconvergence analysis of FEM and SDFEM on graded meshes for a problem with characteristic layers. Comput. Math. Appl. 93, 50–57 (2021)

  3. Castillo, P., Cockburn, B., Schötzau, D., Schwab, C.: Optimal a priori error estimates for the \(hp\)-version of the local discontinuous Galerkin method for convection-diffusion problems. Math. Comp. 71(238), 455–478 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheng, Y., Jiang, S., Stynes, M.: Supercloseness of the local discontinuous Galerkin method for a singularly perturbed convection-diffusion problem. Math. Comp. 92(343), 2065–2095 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheng, Y., Mei, Y.: Analysis of generalised alternating local discontinuous Galerkin method on layer-adapted mesh for singularly perturbed problems. Calcolo 58(4), 52 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng, Y., Mei, Y., Roos, H.-G.: The local discontinuous Galerkin method on layer-adapted meshes for time-dependent singularly perturbed convection-diffusion problems. Comput. Math. Appl. 117, 245–256 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, Y., Yan, L., Wang, X., Liu, Y.: Optimal maximum-norm estimate of the LDG method for singularly perturbed convection-diffusion problem. Appl. Math. Lett. 128, 107947 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Franz, S., Kellogg, R.B., Stynes, M.: Galerkin and streamline diffusion finite element methods on a Shishkin mesh for a convection-diffusion problem with corner singularities. Math. Comp. 81(278), 661–685 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Franz, S., Matthies, G.: Local projection stabilisation on S-type meshes for convection-diffusion problems with characteristic layers. Computing 87(3–4), 135–167 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Franz, S., Roos, H.-G.: Error estimation in a balanced norm for a convection-diffusion problem with two different boundary layers. Calcolo 51(3), 423–440 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gie, G.-M., Hamouda, M., Jung, C.-Y., Temam, R.M.: Applied Mathematical Sciences. Singular perturbations and boundary layers, vol. 200. Springer, Cham (2018)

    Google Scholar 

  13. Gie, G.-M., Jung, C.-Y., Lee, H.: Enriched finite volume approximations of the plane-parallel flow at a small viscosity. J. Sci. Comput. 84(1), 26 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gie, G.-M., Jung, C.-Y., Temam, R.: Analysis of mixed elliptic and parabolic boundary layers with corners. Int. J. Differ. Equ. (2013). https://doi.org/10.1155/2013/532987

    Article  MathSciNet  MATH  Google Scholar 

  15. Jung, C.-Y., Temam, R.: On parabolic boundary layers for convection-diffusion equations in a channel: analysis and numerical applications. J. Sci. Comput. 28(2–3), 361–410 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kellogg, R.B., Stynes, M.: Corner singularities and boundary layers in a simple convection-diffusion problem. J. Differ. Equ. 213(1), 81–120 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kellogg, R.B., Stynes, M.: Sharpened bounds for corner singularities and boundary layers in a simple convection-diffusion problem. Appl. Math. Lett. 20(5), 539–544 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Linß, T.: Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems. Lecture Notes in Mathematics. Springer-Verlag, Berlin (2010)

    Book  MATH  Google Scholar 

  19. Linß, T., Stynes, M.: Numerical methods on Shishkin meshes for linear convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 190(28), 3527–3542 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, X., Zhang, J.: Uniform supercloseness of Galerkin finite element method for convection-diffusion problems with characteristic layers. Comput. Math. Appl. 75(2), 444–458 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. O’Riordan, E., Shishkin, G.I.: Parameter uniform numerical methods for singularly perturbed elliptic problems with parabolic boundary layers. Appl. Numer. Math. 58(12), 1761–1772 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Roos, H.-G., Stynes, M., Tobiska, L.: Robust numerical methods for singularly perturbed differential equations, second ed., Springer Series in Computational Mathematics, vol. 24, Springer-Verlag, Berlin, Convection-diffusion-reaction and flow problems (2008)

  23. Roos, H.-G., Zarin, H.: A supercloseness result for the discontinuous Galerkin stabilization of convection-diffusion problems on Shishkin meshes. Numer. Methods Part. Differ. Equ. 23(6), 1560–1576 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schwab, C.: p- and hp-Finite Element Methods, Theory and Applications in Solid and Fluid Mechanics, Oxford University Press, Oxford, UK, (1998)

  25. Shih, S.-D., Kellogg, R.B.: Asymptotic analysis of a singular perturbation problem. SIAM J. Math. Anal. 18(5), 1467–1511 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stynes, M., Stynes, D.: Convection-diffusion problems, Graduate Studies in Mathematics, vol. 196, American Mathematical Society, Providence, RI; Atlantic Association for Research in the Mathematical Sciences (AARMS), Halifax, NS, An introduction to their analysis and numerical solution (2018)

  27. Xie, Z., Zhang, Z.: Uniform superconvergence analysis of the discontinuous Galerkin method for a singularly perturbed problem in 1-D. Math. Comp. 79(269), 35–45 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xie, Z., Zhang, Z., Zhang, Z.: A numerical study of uniform superconvergence of LDG method for solving singularly perturbed problems. J. Comput. Math. 27(2–3), 280–298 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Zarin, H., Roos, H.-G.: Interior penalty discontinuous approximations of convection-diffusion problems with parabolic layers. Numer. Math. 100(4), 735–759 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, J., Stynes, M.: Supercloseness of continuous interior penalty method for convection-diffusion problems with characteristic layers. Comput. Methods Appl. Mech. Engrg. 319, 549–566 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhu, H., Celiker, F.: Nodal superconvergence of the local discontinuous Galerkin method for singularly perturbed problems. J. Comput. Appl. Math. 330, 95–116 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhu, H., Zhang, Z.: Uniform convergence of the LDG method for a singularly perturbed problem with the exponential boundary layer. Math. Comp. 83(286), 635–663 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Stynes.

Ethics declarations

Conflict of interest

No competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper was partly written during a visit by Yao Cheng to Beijing Computational Science Research Center in July 2022. The research of Y. Cheng was supported by NSFC grant 11801396 and Natural Science Foundation of Jiangsu Province grant BK20170374. The research of M. Stynes was partly supported by NSFC grants 12171025 and NSAF-U2230402.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Stynes, M. The local discontinuous Galerkin method for a singularly perturbed convection–diffusion problem with characteristic and exponential layers. Numer. Math. 154, 283–318 (2023). https://doi.org/10.1007/s00211-023-01361-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-023-01361-z

Keywords

Mathematics Subject Classification

Navigation