[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Levenberg–Marquardt method in Banach spaces with general convex regularization terms

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We propose a Levenberg–Marquardt method with general uniformly convex regularization terms to solve nonlinear inverse problems in Banach spaces, which is an extension of the scheme proposed by Hanke in (Inverse Probl 13:79–95, 1997) in Hilbert space setting. The method is so designed that it can be used to detect the features of the sought solutions such as sparsity or piecewise constancy. It can also be used to deal with the situation that the data is contaminated by noise containing outliers. By using tools from convex analysis in Banach spaces, we establish the convergence of the method. Numerical simulations are reported to test the performance of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bachmayr, M., Burger, M.: Iterative total variation schemes for nonlinear inverse problems. Inverse Probl. 25(10), 105004 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bakushinsky, A.B., Kokurin, M.Y.: Iterative Methods for Approximate Solutions of Inverse Problems. Mathematics and Its Applications (New York), vol. 577. Springer, Dordrecht (2004)

  3. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming, Theory and Algorithms, 3rd edn. Wiley-Interscience, New York (2006)

    Book  MATH  Google Scholar 

  4. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer, Dordrecht (1990)

    Book  MATH  Google Scholar 

  7. Colonius, F., Kunisch, K.: Stability for parameter estimation in two point boundary value problems. J. Reine Angew. Math. 370, 1–29 (1986)

    MathSciNet  MATH  Google Scholar 

  8. Engl, H.W., Hanke, M., Neunauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Book  Google Scholar 

  9. Engl, H.W., Kunisch, K., Neubauer, A.: Convergence rates of Tikhonov regularization of nonlinear ill-posed problems. Inverse Probl. 5, 523–540 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hanke, M.: Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems. Numer. Funct. Anal. Optim. 18(9–10), 971–993 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hanke, M.: A regularizing Levenberg–Marquardt scheme with applications to inverse groundwater filtration problems. Inverse Probl. 13, 79–95 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hanke, M., Neubauer, A., Scherzer, O.: A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer. Math. 72, 21–37 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hettlich, F., Rundell, W.: A second degree method for nonlinear inverse problems. SIAM J. Numer. Anal. 37(2), 587–620 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hohage, T., Werner, F.: Iteratively regularized Newton-type methods for general data misfit functionals and applications to Poisson data. Numer. Math. 123(4), 745–779 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hohage, T., Werner, F.: Convergence rates for inverse problems with impulsive noise. SIAM J. Numer. Anal. 52(3), 1203–1221 (2014)

  16. Jin, Q.: Applications of the modified discrepancy principle to Tikhonov regularization of nonlinear ill-posed problems. SIAM J. Numer. Anal. 36(2), 475–490 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jin, Q.: On the order optimality of the regularization via inexact Newton iterations. Numer. Math. 121, 237–260 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jin, Q.: Inexact Newton–Landweber iteration for solving nonlinear inverse problems in Banach spaces. Inverse Probl. 28, 065002 (15pp) (2012)

  19. Jin, Q., Tautenhahn, U.: On the discrepancy principle for some Newton type methods for solving nonlinear inverse problems. Numer. Math. 111, 509–558 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jin, Q., Wang, W.: Landweber iteration of Kaczmarz type with general non-smooth convex penalty functionals. Inverse Probl. 29, 085011 (22pp) (2013)

  21. Jin, Q., Zhong, M.: On the iteratively regularized Gauss–Newton method in Banach spaces with applications to parameter identification problems. Numer. Math. 124, 647–683 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jin, Q., Zhong, M.: Nonstationary iterated Tikhonov regularization in Banach spaces with uniformly convex penalty terms. Numer. Math. 127, 485–513 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kaltenbacher, B.: A convergence rates result for an iteratively regularized Gauss–Newton–Halley method in Banach space. Inverse Probl. 31, 015007 (20pp) (2015)

  24. Kaltenbacher, B., Hofmann, B.: Convergence rates for the iteratively regularized Gauss–Newton method in Banach spaces. Inverse Probl. 26, 035007 (21pp) (2010)

  25. Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative Regularization Methods for Nonlinear Ill-Posed Problems. de Gruyter, Berlin (2008)

    Book  MATH  Google Scholar 

  26. Kaltenbacher, B., Schöpfer, F., Schuster, T.: Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems. Inverse Probl. 25, 065003 (19pp) (2009)

  27. Lechleiter, A., Rieder, A.: Towards a general convergence theory for inexact Newton regularizations. Numer. Math. 114, 521–548 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Margotti, F., Rieder, A., Leitäo, A.: A Kaczmarz version of the REGINN-Landweber iteration for ill-posed problems in Banach spaces. SIAM J. Numer. Anal. 52, 1439–1465 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  30. Rieder, A.: On the regularization of nonlinear ill-posed problems via inexact Newton iterations. Inverse Probl. 15, 309–327 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schuster, T., Kaltenbacher, B., Hofmann, B., Kazimierski, K.S.: Regularization Methods in Banach Spaces. Walter de Gruyter, Berlin (2012)

    Book  MATH  Google Scholar 

  32. Z\(\breve{\text{ a }}\)linscu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co., Inc., River Edge (2002)

  33. Zhu, M., Chan, T.F.: An efficient primaldual hybrid gradient algorithm for total variation image restoration. CAM Report 08-34, UCLA (2008)

Download references

Acknowledgments

Q Jin is partly supported by the ARC discovery project grant DP150102345 and H Yang is partly supported by the Natural Science Foundation of China under grant 11071264 and 11571386.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinian Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Q., Yang, H. Levenberg–Marquardt method in Banach spaces with general convex regularization terms. Numer. Math. 133, 655–684 (2016). https://doi.org/10.1007/s00211-015-0764-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-015-0764-z

Mathematics Subject Classification

Navigation