Abstract
We consider discretizations for reaction–diffusion systems with nonlinear diffusion in two space dimensions. The applied model allows to handle heterogeneous materials and uses the chemical potentials of the involved species as primary variables. We propose an implicit Voronoi finite volume discretization on arbitrary, even anisotropic, Voronoi meshes that allows to prove uniform, mesh-independent global upper and lower bounds for the chemical potentials. These bounds provide one of the main steps for a convergence analysis for the fully discretized nonlinear evolution problem. The fundamental ideas are energy estimates, a discrete Moser iteration and the use of discrete Gagliardo–Nirenberg inequalities.
Similar content being viewed by others
References
Bessemoulin-Chatard, M., Chainais-Hillairet, C., Filbet, F.: On discrete functional inequalities for some finite volume schemes (April 10, 2013). http://math.univ-lyon1.fr/filbet/Papers/paper34.pdf. Submitted
Bothe, D., Pierre, M.: Quasi-steady-state approximation for a reaction-diffusion system with fast intermediate. J. Math. Anal. Appl. 368(1), 120–132 (2010)
Brown, A.J.: Enzym action. J. Chem. Soc. 81, 373–386 (1902)
Carberry, J.: Chemical and catalytic reaction engineering. Dover Books on Chemistry Series. Dover Publications, Dover (2001)
Chou, S.H., Tang, S.: Conservative \(P1\) conforming and nonconforming Galerkin FEMs: effective flux evaluation via a nonmixed method approach. SIAM J. Numer. Anal. 38(2), 660–680 (2000)
Desvillettes, L., Fellner, K.: Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations. J. Math. Anal. Appl. 319(1), 157–176 (2006)
Desvillettes, L., Fellner, K., Pierre, M., Vovelle, J.: Global existence for quadratic systems of reaction-diffusion. Adv Nonlinear Stud 7(3), 491–511 (2007)
Deuflhard, P., Bornemann, F.: Gewöhnliche Differentialgleichungen. No. Bd. 2 in Numerische Mathematik. de Gruyter, Germany (2008)
Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)
Erdmann, A., Shao, F., Fuhrmann, J., Fiebach, A., Patis, G.P., Trefonas, P.: Modeling of double patterning interactions in litho-cure-litho-etch (lcle) processes. p. 76400B. SPIE (2010)
Eymard, R., Fuhrmann, J., Gärtner, K.: A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local Dirichlet problems. Numer. Math. 102(3), 463–495 (2006)
Eymard, R., Gallouët, T., Herbin, R.: The finite volume method. In: Ciarlet, P., Lions, J.L. (eds.) Handbook of Numerical Analysis, pp. 713–1020. North Holland, Amsterdam (2000)
Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes sushi: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30(4), 1009–1043 (2010). doi:10.1093/imanum/drn084
Eymard, R., Hilhorst, D., Murakawa, H., Olech, M.: Numerical approximation of a reaction-diffusion system with fast reversible reaction. Chin. Ann. Math. Ser. B 31(5), 631–654 (2010). doi:10.1007/s11401-010-0604-5
Fiebach, A.: A dissipative finite volume scheme for reaction-diffusion systems in heterogeneous materials. Ph.D. thesis, Freie Universität Berlin (Submitted December 2013)
Fuhrmann, J., Fiebach, A., Patsis, G.P.: Macroscopic and stochastic modeling approaches to pattern doubling by acid catalyzed cross-linking. In: Proceedings of SPIE, vol. 7639, pp. 76392I. SPIE (2010)
Fuhrmann, J., Fiebach, A., Uhle, M., Erdmann, A., Szmanda, C.R., Truong, C.: A model of self-limiting residual acid diffusion for pattern doubling. Microelectron. Eng. 86(4–6), 792–795 (2009)
Fuhrmann, J., Linke, A., Langmach, H.: A numerical method for mass conservative coupling between fluid flow and solute transport. Appl. Numer. Math. 61(4), 530–553 (2011)
Gajewski, H., Gröger, K.: Reaction–diffusion processes of electrically charged species. Math. Nachr. 177(1), 109–130 (1996)
Gajewski, H., Skrypnik, I.V.: Existence and uniqueness results for reaction-diffusion processes of electrically charged species. Nonlinear Elliptic and Parabolic Problems (Zurich 2004). Progress in Nonlinear Differential Equations and Their Applications, vol. 64, pp. 151–188. Birkhäuser, Basel (2005)
Gärtner, K.: Existence of bounded discrete steady-state solutions of the van Roosbroeck system on boundary conforming Delaunay grids. SIAM J. Sci. Comput. 31(2), 1347–1362 (2009)
Giovangigli, V.: Multicomponent flow modeling. Modeling and Simulation in Science, Engineering & Technology. Birkhäuser, Boston (1999)
Glitzky, A.: Exponential decay of the free energy for discretized electro-reaction-diffusion systems. Nonlinearity 21(9), 1989–2009 (2008)
Glitzky, A.: Uniform exponential decay of the free energy for Voronoi finite volume discretized reaction-diffusion systems. Math. Nachr. 284(17–18), 2159–2174 (2011)
Glitzky, A., Gärtner, K.: Energy estimates for continuous and discretized electro-reaction-diffusion systems. Nonlinear Anal. Theory Methods Appl. Ser. A 70(2), 788–805 (2009)
Glitzky, A., Griepentrog, J.A.: Discrete Sobolev–Poincaré inequalities for Voronoi finite volume approximations. SIAM J. Numer. Anal. 48(1), 372–391 (2010)
Glitzky, A., Gröger, K., Hünlich, R.: Free energy and dissipation rate for reaction diffusion processes of electrically charged species. Appl. Anal. 60(3–4), 201–217 (1996)
Glitzky, A., Hünlich, R.: Energetic estimates and asymptotics for electro-reaction-diffusion systems. Z. Angew. Math. Mech. 77(11), 823–832 (1997)
Glitzky, A., Hünlich, R.: Global estimates and asymptotics for electro-reaction-diffusion systems in heterostructures. Appl. Anal. 66(3–4), 205–226 (1997)
Glitzky, A., Hünlich, R.: Electro-reaction-diffusion systems including cluster reactions of higher order. Math. Nachr. 216, 95–118 (2000)
Gröger, K.: Free energy estimates and asymptotic behaviour of reaction-diffusion processes. Preprint 20, Institut für Angewandte Analysis und Stochastik im Forschungsverbund Berlin e.V. (1992)
Hall, R.N.: Electron-hole recombination in germanium. Phys. Rev. 87, 387–387 (1952)
Kufner, A., John, O., John, O., Fučík, S.: Function spaces. Monographs and Textbooks on Mechanics of Solids and Fluids: Mechanics, Analysis. Noordhoff International Publishing, Leyden (1977)
Mack, C.: Fundamental Principles of Optical Lithography : The Science of Microfabrication. Wiley, Chichester (2007)
Matiut, D., Erdmann, A., Tollkuehn, B., Semmler, A.: New models for the simulation of post-exposure bake of chemically amplified resists, pp. 1132–1142 (2003)
Matthies, G., Tobiska, L.: Mass conservation of finite element methods for coupled flow-transport problems. Int. J. Comput. Sci. Math. 1(2–4), 293–307 (2007)
Morgan, J.: Global existence for semilinear parabolic systems. SIAM J. Math. Anal. 20(5), 1128–1144 (1989)
Moser, J.: A new proof of de Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13(3), 457–468 (1960)
Muirhead, R.F.: Some methods applicable to identities and inequalities of symmetric algebraic functions of \(n\) letters. Edinb. M. S. Proc. 21, 143–157 (1903)
Nirenberg, L.: An extended interpolation inequality. Ann. Sc. Norm. Super. Pisa Sci. Fis. Mat. III Ser. 20, 733–737 (1966)
Pierre, M.: Global existence in reaction-diffusion systems with control of mass: a survey. Milan J. Math. 78(2), 417–455 (2010)
Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. In: Computational Science-ICCS 2002, Part II (Amsterdam), Lecture Notes in Computer Science, vol. 2330, pp. 355–363. Springer, Berlin (2002)
Schenk, O., Gärtner, K.: On fast factorization pivoting methods for sparse symmetric indefinite systems. ETNA Electron. Trans. Numer. Anal. 23, 158–179 (2006)
Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)
Zeidler, E., Boron, L.: Nonlinear functional analysis and its applications: II/B Nonlinear monotone operators. No. Bd. 2 in Nonlinear Functional Analysis and Its Applications. Springer, New York (1990)
Acknowledgments
A. Fiebach was supported by the European Commission within the Seventh Framework Programme \((FP7)\) MD3 “Material Development for Double Exposure and Double Patterning”. A. Linke and A. Glitzky are partially supported by the DFG Research Center Matheon Mathematics for key technologies. The authors would like to thank Klaus Gärtner, Jens Griepentrog, and Hang Si for their assistance and for valuable discussions.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix A: Discrete Gagliardo–Nirenberg inequality
In the following, we recapitulate from [1] a discrete version of the Gagliardo–Nirenberg inequality [40] and a discrete Sobolev–Poincaré inequality on admissible finite volume meshes [12]. The proof uses functions of bounded variation and is done under the general assumption on the mesh, that
see [1, Eq. (4)]. In the case of Voronoi meshes this condition holds true with \(\xi =\frac{1}{2}\).
Lemma 5
(see [1, Th. 3 and Th. 4]) Let \(\varOmega \) be an open bounded polyhedral domain of \(\mathbb {R}^d\), \(d\ge 2\). Let \(\mathcal {M}=(\mathcal {P},\mathcal {V},\mathcal {E})\) be a given admissible finite volume mesh which satisfies (34).
-
Then, there exists a constant \(C>0\) only depending on \(d\) and \(\varOmega \) (but not on \(\mathcal {M}\)) such that
$$\begin{aligned} \mathord {\left||w_h\right||}_{L^p}\le C_{gn,p}\mathord {\left||w_h\right||}_{L^1}^{1-\theta }\mathord {\left||w_h\right||}_{H^1,\mathcal {M}}^{\theta },\quad C_{gn,p}\!:=\!\frac{C}{\xi ^{\theta /2}}, \quad \forall w_h\!\in \! X_{\mathcal {V}}(\mathcal {M}),\qquad \end{aligned}$$(35)where
$$\begin{aligned} \theta =\frac{2d(1-p)}{(d+2)p},\quad p\in {\left\{ \begin{array}{ll} \left[ 1,\infty \right) &{} \text { if } d=2,\\ \left[ 1,2d/(d-2)\right] &{} \text { if } d>2. \end{array}\right. } \end{aligned}$$(36) -
Let \(d\le 2\). Then for all \(p\in [1,\infty )\) there exists a constant \(C>0\) only depending on \(p\), \(d\) and \(\varOmega \) (but not on \(\mathcal {M}\)) such that
$$\begin{aligned} \mathord {\left||w_h\right||}_{L^p}\le \frac{C}{\xi ^{1/2}}\mathord {\left||w_h\right||}_{H^1,\mathcal {M}} \quad \forall w_h\in X_{\mathcal {V}}(\mathcal {M}). \end{aligned}$$(37) -
Let \(d> 2\). Then for all \(1\le p \le \frac{2d}{d-2}\) there exists a constant \(C>0\) only depending on \(p\), \(d\) and \(\varOmega \) (but not on \(\mathcal {M}\)) such that
$$\begin{aligned} \mathord {\left||w_h\right||}_{L^p}\le \frac{C}{\xi ^{1/2}}\mathord {\left||w_h\right||}_{H^1,\mathcal {M}} \quad \forall w_h\in X_{\mathcal {V}}(\mathcal {M}). \end{aligned}$$(38)
Remark 8
An inspection of the proof shows that \(C_{gn,p}\) depends continuously on \(p\) and can therefore be estimated uniformly for \(p\in [2,3]\). The results of [1, Th. 3 and Th. 4] allow us to handle all Voronoi meshes, including arbitrarily anisotropic grids. We remark that in the case of homogeneous Dirichlet boundary conditions a discrete Sobolev–Poincaré inequality on more general meshes than admissible meshes is proven in [13, Sec. 5].
In the proof of Theorem 3 we need a special case of the discrete Gagliardo–Nirenberg inequality:
Corollary 2
Let \(\varOmega \) be an open bounded polygonal domain in \(\mathbb {R}^2\). Let \(\mathcal {M}=(\mathcal {P},\mathcal {V},\mathcal {E})\) be a given admissible finite volume mesh which satisfies (34). For any \(\epsilon >0\) and any \(p\in (1,3]\) there exists a constant \(c_{\epsilon ,p}>0\) such that
(For \(\epsilon \rightarrow 0\) it follows \(c_{\epsilon ,p}\rightarrow \infty \)).
Proof
For \(N>1\) we define the function
Adding and subtracting \(\chi (w_h)\) we obtain
The first term of (40) can be estimated by
Applying (35) for the second term of (40) we obtain
We estimate
and since \(\mathord {\left|\frac{\chi (w_L)-\chi (w_K)}{w_L-w_K}\right|}\le 2\) and \(\mathord {\left|\chi (w_h)\right|}\le \mathord {\left|w_h\right|}\) we deduce
All together we find
with \(c_{\epsilon ,p}=c_p(2 N)^{p-1}\) and \(\epsilon =\frac{c_p C^p 2^{p-1}}{\ln N}\). \(\square \)
Appendix B: Technical lemmas
In this part we collect some auxiliary results, which we use in Sect. 3.4 and in Sect. 3.6.
Lemma 6
Let \(x,y,p\in \mathbb {R}\), \(x,y>0\).
-
1.
For \(p\ge 2\) the following inequalities hold:
$$\begin{aligned} \frac{4(p-1)}{p^2}\left( x^{p/2}-y^{p/2}\right) ^2 \le (x-y)(x^{p-1}-y^{p-1})\le \left( x^{p/2}-y^{p/2}\right) ^2.\qquad \end{aligned}$$(41) -
2.
For \(p\ge 1\), we have
$$\begin{aligned} \frac{1}{p}(x^{p}-y^{p}) \le x^{p-1}(x-y). \end{aligned}$$(42) -
3.
Finally, for \(p\ge 2\) the inequalities
$$\begin{aligned} \frac{2}{p^2}(x^{p/2}-y^{p/2})^2\le (x^{p-2}+y^{p-2})(x-y)^2\le 2(x^{p/2}-y^{p/2})^2 \end{aligned}$$(43)are fulfilled.
Proof
-
1.
For \(z\ge 1\), we consider the function
$$\begin{aligned} f(z)=(z-1)(z^{p-1}-1)-\frac{4(p-1)}{p^2}(z^{p/2}-1)^2. \end{aligned}$$The first and second derivatives of \(f\) are given by
$$\begin{aligned} \frac{d}{d z} f(z)&= \frac{(p-2)^2}{p} z^{p-1} - (p-1) z^{p-2} +\frac{4(p-1)}{p}z^{p/2-1} -1,\\ \frac{d^2}{d z^2} f(z)&= \frac{(p-2)(p-1)}{p} \left( ((p-2)z-p)z^{p-3}+2z^{p/2-2}\right) . \end{aligned}$$It is easy to see that \(f(1)=0\), \(f^{\prime }(1)=0\) and \(f^{\prime \prime }(1)=0\). Further, we deduce from \(f^{\prime \prime }(z)>0\) for \(z>1\) that \(f^{\prime }(z)>0\) and \(f(z)>0\). With \(z=x/y\), \(x\ge y > 0\) we find
$$\begin{aligned} 0\le f(x/y)= (x-y)(x^{p-1}-y^{p-1}) -\frac{4(p-1)}{p^2}\left( x^{p/2}-y^{p/2}\right) ^2 \end{aligned}$$and finally by using Muirhead’s inequality
$$\begin{aligned} \left( x^{p/2}-y^{p/2}\right) ^2-(x-y)(x^{p-1}-y^{p-1})= x^{p-1}y+x y^{p-1}-2 x^{p/2} y^{p/2} \ge 0 \end{aligned}$$holds. The case \(y=0\) is trivial.
-
2.
For the second statement we consider for \(z\ge 1\) the function
$$\begin{aligned} f(z)=\frac{p-1}{p} z^{p}- z^{p-1}+ \frac{1}{p}. \end{aligned}$$Since \(f(1)=0\), the first derivative of \(f\)
$$\begin{aligned} \frac{d}{d z} f(z) = (p-1) z^{p-2}(z-1)\ge 0 \end{aligned}$$implies \(f(z)\ge 0\). Setting \(z=x/y\), \(x\ge y > 0\) we find
$$\begin{aligned} 0 \le y^p f(x/y)= \left( \frac{p-1}{p}\frac{x^p}{y^p} -\frac{x^{p-1}}{y^{p-1}} +\frac{1}{p}\right) y^p \!=\!x^{p-1}(x-y)-\frac{1}{p}(x^p-y^p). \end{aligned}$$For \(x\le y\) it results
$$\begin{aligned} \frac{1}{p}(x^p-y^p)\le (x^p-y^p) \le x^{p-1}(x-y x^{-p+1}) \le x^{p-1}(x-y). \end{aligned}$$ -
3.
Now let
$$\begin{aligned} f(z)=(z^{p-2}+1)(z-1)^2-\frac{2}{p^2}(z^{p/2}-1)^2. \end{aligned}$$The first and second derivatives are given by
$$\begin{aligned} \frac{d}{d z} f(z)&= 2(z-1)(z^{p-2}+1)+(p-2)(z-1)^2 z^{p-3} -\frac{2}{p}(z^{p/2}-1)z^{p/2-1},\\ \frac{d^2}{d z^2} f(z)&= \frac{1}{p}\left( 2p+(p-2)z^{p/2-2}+z^{p-4} g(z)\right) \end{aligned}$$with
$$\begin{aligned} g(z)&= (p-3)(p-2)p-2(p-2)(p-1)p z+(p-1)(p^2-2)z^2,\\ g^{\prime }(z)&= 2(p-1)\left( (p^2-2) z-(p-2) p\right) ,\\ g^{\prime \prime }(z)&= 2(p-1)(p^2-2). \end{aligned}$$From \(g^{\prime \prime }(z)>0\) for \(z>1\) and \(p\ge 2\) we see that \(g(z)\) is a convex function. Furthermore \(f(z)\) is convex since \(g^{\prime }(1)=4(p-1)^2>0\), \(g(1)=2\) and \(f^{\prime \prime }(z)>0\). Using \(f^{\prime }(1)=f(1)=0\) we get \(f(z)>0\) and with \(z=x/y\), \(x\ge y > 0\) the first inequality of (43). The last assertion follows from
$$\begin{aligned}&(x^{p/2}-y^{p/2})^2-\frac{1}{2}(x^{p-2}+y^{p-2})(x-y)^2\\&\quad = \frac{1}{2}\left( x^p+y^p-x^{p-2}y^2-x^2 y^{p-2}\right) +\left( x^{p-1}y+xy^{p-1}-2x^{p/2}y^{p/2}\right) \end{aligned}$$together with Muirhead’s inequality for the term
$$\begin{aligned} x^p+y^p&\ge x^{p-2}y^2+x^2y^{p-2},&x^{p-1}y+xy^{p-1}&\ge 2 x^{p/2}y^{p/2}. \end{aligned}$$
\(\square \)
Lemma 7
Let \(x\) be a real number. Then
hold. We define the value of the functions at \(x=0\) as limit \(x\rightarrow 0\).
Proof
Using the power series of \(\sinh (x)\) and \(\cosh (x)\) we obtain
\(\square \)
Rights and permissions
About this article
Cite this article
Fiebach, A., Glitzky, A. & Linke, A. Uniform global bounds for solutions of an implicit Voronoi finite volume method for reaction–diffusion problems. Numer. Math. 128, 31–72 (2014). https://doi.org/10.1007/s00211-014-0604-6
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-014-0604-6