[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Lattice rules for nonperiodic smooth integrands

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

The aim of this paper is to show that one can achieve convergence rates of \(N^{-\alpha + \delta }\) for \(\alpha > 1/2\) (and for \(\delta > 0\) arbitrarily small) for nonperiodic \(\alpha \)-smooth cosine series using lattice rules without random shifting. The smoothness of the functions can be measured by the decay rate of the cosine coefficients. For a specific choice of the parameters the cosine series space coincides with the unanchored Sobolev space of smoothness 1. We study the embeddings of various reproducing kernel Hilbert spaces and numerical integration in the cosine series function space and show that by applying the so-called tent transformation to a lattice rule one can achieve the (almost) optimal rate of convergence of the integration error. The same holds true for symmetrized lattice rules for the tensor product of the direct sum of the Korobov space and cosine series space, but with a stronger dependence on the dimension in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55. U.S. Government Printing Office, Washington, D.C. (1964)

  2. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68(3), 337–404 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bakhvalov, N.S.: Approximate computation of multiple integrals (in Russian). Vestnik Moskov. Univ. Ser. Mat. Meh. Astr. Fiz. Him. 4, 3–18 (1959)

  4. Cools, R., Haegemans, A.: An imbedded family of cubature formulae for \(n\)-dimensional product regions. J. Comput. Appl. Math. 51(2), 251–262 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cools, R., Kuo, F.Y., Nuyens, D.: Constructing embedded lattice rules for multivariate integration. SIAM J. Sci. Comput. 28(6), 2162–2188 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cristea, L.L., Dick, J., Pillichshammer, F., Leobacher, G.: The tent transformation can improve the convergence rate of quasi-Monte Carlo algorithms using digital nets. Numer. Math. 105(3), 413–455 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dick, J.: On the convergence rate of the component-by-component construction of good lattice rules. J. Complexity 20(4), 493–522 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dick, J.: Explicit constructions of quasi-Monte Carlo rules for the numerical integration of high dimensional periodic functions. SIAM J. Numer. Anal. 45(5), 2141–2176 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dick, J.: Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order. SIAM J. Numer. Anal. 46(3), 1519–1553 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  11. Dick, J., Pillichshammer, F., Waterhouse, B.J.: The construction of good extensible rank-1 lattices. Math. Comp. 77(264), 2345–2373 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dick, J., Sloan, I.H., Wang, X., Woźniakowski, H.: Good lattice rules in weighted Korobov spaces with general weights. Numer. Math. 103(1), 63–97 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Genz, A.C., Malik, A.A.: An imbedded family of fully symmetric numerical integration rules. SIAM J. Numer. Anal. 20(3), 580–588 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Math. Comp. 67(221), 299–322 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hickernell, F.J.: Obtaining \(O(n^{-2+\epsilon })\) convergence for lattice quadrature rules. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 274–289. Springer, Berlin (2002)

    Chapter  Google Scholar 

  16. Hickernell, F.J., Kritzer, P., Kuo, F.Y., Nuyens, D.: Weighted compound integration rules with higher order convergence for all \(N\). Numer. Algorithms 59(2), 161–183 (2011)

    Article  MathSciNet  Google Scholar 

  17. Hickernell, F.J., Niederreiter, H.: The existence of good extensible rank-1 lattices. J. Complexity 19(3), 286–300 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Iserles, A., Nørsett, S.P.: From high oscillation to rapid approximation I: Modified Fourier expansions. IMA J. Numer. Anal. 28(4), 862–887 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Korobov, N.M.: Number-theoretic methods in approximate analysis (in Russian). Goz. Izdat. Fiz.-Math (1963)

  20. Kuo, F.Y.: Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces. J. Complexity 19(3), 301–320 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kuo, F.Y., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo methods for high-dimensional integration: The standard (weighted Hilbert space) setting and beyond. ANZIAM J. 53(1), 1–37 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kuo, F.Y., Sloan, I.H., Woźniakowski, H.: Periodization strategy may fail in high dimensions. Numer. Algorithms 46(4), 369–391 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. Number 63 in Regional Conference Series in Applied Mathematics. SIAM (1992)

  24. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, vol. I: Linear Information. EMS Tracts in Mathematics, vol. 6. European Mathematical Society Publishing House (2008)

  25. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, vol. II: Standard Information for Functionals. EMS Tracts in Mathematics, vol. 12. European Mathematical Society Publishing House (2010)

  26. Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comp. 75(254), 903–920 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nuyens, D., Cools, R.: Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points. J. Complexity 22(1), 4–28 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Nuyens, D., Cools, R.: Higher order quasi-Monte Carlo methods: a comparison. AIP Conf. Ser. 1281, 553–557 (2010)

    Article  Google Scholar 

  29. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford Science Publications, Oxford (1994)

    MATH  Google Scholar 

  30. Sloan, I.H., Kuo, F.Y., Joe, S.: On the step-by-step construction of quasi-Monte Carlo integration rules that achieve strong tractability error bounds in weighted Sobolev spaces. Math. Comp. 71(240), 1609–1640 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sloan, I.H., Reztsov, A.V.: Component-by-component construction of good lattice rules. Math. Comp. 71(237), 263–273 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Temlyakov, V.N.: Cubature formulas, discrepancy, and nonlinear approximation. J. Complexity 19(3), 352–391 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wasilkowski, G.W., Woźniakowski, H.: Weighted tensor product algorithms for linear multivariate problems. J. Complexity 15(3), 402–447 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. Werschulz, A.G., Woźniakowski, H.: Tractability of multivariate approximation over a weighted unanchored Sobolev space. Constr. Approx. 30(3), 395–421 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Zaremba, S.K.: La méthode des “bons treillis” pour le calcul des intégrales multiples. In: Zaremba, S.K. (ed.) Applications of Number Theory to Numerical Analysis, pp. 39–119. Academic Press, Dublin (1972)

    Google Scholar 

Download references

Acknowledgments

J.D. is supported by an Australian Research Council Queen Elizabeth II fellowship. D.N. is a fellow of the Research Foundation Flanders (FWO) and thanks Prof. Ian H. Sloan for initial discussions on the half-period cosine space. The first two authors are grateful to the Hausdorff Institute in Bonn where most of this research was carried out. F.P. is partially supported by the Austrian Science Foundation (FWF), Project S9609.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Nuyens.

Appendix: Proof of Theorem 4

Appendix: Proof of Theorem 4

Proof

We follow the proof of Temlyakov [32, Lemma 3.1]. Let \(\beta := \sum _{n=0}^{N-1} w_n\). If \(\beta = 0\) then \(e(\mathcal H (K^{\cos }_{\alpha ,\varvec{\gamma },s}); P; \mathbf{w}) \ge 1\), since for \(f = 1\) the integration error is \(1\). In this case the result holds trivially for sufficiently small \(C(\alpha ,\varvec{\gamma },s)\). Thus we can assume now that \(\beta \ne 0\).

We have

$$\begin{aligned}&e^2(\mathcal H (K^{\cos }_{\alpha ,\varvec{\gamma },s}); P; \mathbf{w})\\&\quad = \int _{[0,1]^{2s}} K(\mathbf{x}, \mathbf{y}) \,\mathrm{d}{\mathbf{x}} \,\mathrm{d}{\mathbf{y}} - 2 \sum _{n=0}^{N-1} w_n \int _{[0,1]^s} K(\mathbf{x},\mathbf{x}_n) \,\mathrm{d}{\mathbf{x}} + \sum _{n,n^{\prime }=0}^{N-1} w_n w_{n^{\prime }} K(\mathbf{x}_n,\mathbf{x}_{n^{\prime }})\\&\quad = (1-\beta )^2+ \sum _{\mathbf{k}\in \mathbb N _0^s \setminus \{\varvec{0}\}} r_{\alpha ,\varvec{\gamma },s}(\mathbf{k}) \, 2^{|\mathbf{k}|_0} \left( \sum _{n=0}^{N-1} w_n \prod _{j=1}^s \cos (\pi k_j x_{j,n}) \right) ^2 \end{aligned}$$

where \(\mathbf{x}_n = (x_{1,n},\ldots , x_{s,n})\).

For \(\mathbf{m} = (m_1,\ldots , m_s) \in \mathbb N _0^s\) and \(|\mathbf{m}| := m_1 + \cdots + m_s\) we will now construct a function \(G(\mathbf{y}) := \sum _{|\mathbf{m}| = t} F_{\mathbf{m}}(\mathbf{y})\), parametrized by the points \(\mathbf{x}_n\) and weights \(w_n\) of the arbitrary cubature rule, to obtain a lower bound on the worst-case error. For this we will pick its cosine coefficients to be bounded above by \(r_{\alpha ,\varvec{\gamma },s}(\mathbf{k})\). Let the integer \(t\) be chosen such that

$$\begin{aligned} 2N \le 2^t < 4N. \end{aligned}$$

Let \(a := \lceil \alpha \rceil + 1\) and let \(f:\mathbb R \rightarrow \mathbb R \) be the \(a\)-times differentiable function

$$\begin{aligned} f(x):=\left\{ \begin{array}{l@{\quad }l} x^{a+1} (1-x)^{a+1} &{} \text{ for } 0 < x < 1, \\ 0 &{} \text{ otherwise }. \end{array}\right. \end{aligned}$$
(8)

Note that \(f(x) > 0\) for \(0 < x < 1\) and \({{\mathrm{supp}}}(f^{(\tau )}) = (0, 1)\) for all \(0 \le \tau \le a\).

For \(m \in \mathbb{N }_0\) let \(f_m(x) := f(2^{m+2}x)\) and for \(\mathbf{m} = (m_1,\ldots , m_s) \in \mathbb N _0^s\) and \(\mathbf{x}= (x_1,\ldots , x_s) \in \mathbb{R }^s\) let

$$\begin{aligned} f_{\mathbf{m}}(\mathbf{x}) := \prod _{j=1}^s f_{m_j}(x_j). \end{aligned}$$

Then \({{\mathrm{supp}}}(f_{\mathbf{m}}) = \prod _{j=1}^s (0, 2^{-m_j-2})\).

We obtain

$$\begin{aligned} \widetilde{f}_{\mathbf{m}, \cos }(\varvec{0}) = \prod _{j=1}^s \int _0^1 f(2^{m_j+2} x) \,\mathrm d x = \prod _{j=1}^s \frac{1}{2^{m_j+2}} \int _0^1 f(y) \,\mathrm d y = \frac{1}{2^{|\mathbf{m}| + 2s}} \left( I(f)\right) ^s, \end{aligned}$$

where \(I(f) := \int _0^1 f(y) \,\mathrm d y\). For \(f\) given by (8) we obtain

$$\begin{aligned} I(f) = B(a+2,a+2) = \frac{((a+1)!)^2}{(2a+3)!}, \end{aligned}$$

where \(B\) denotes the beta function.

For \(k \not =0\) we have

$$\begin{aligned} \widetilde{f}_{m,\cos }(k)&= \int _{0}^1 f(2^{m+2} x) \sqrt{2} \cos (\pi k x) \,\mathrm d x\\&= \frac{1}{\sqrt{2}} \int _{0}^{2^{-m-2}} f(2^{m+2} x) \left( \mathrm e ^{\pi \mathrm i k x} + \mathrm e ^{-\pi \mathrm i k x}\right) \, \mathrm d x\\&= \frac{1}{2^{m+2} \sqrt{2}} \int _{0}^1 f(y) \left( \mathrm e ^{2\pi \mathrm i k 2^{-m-3} y} + \mathrm e ^{-2\pi \mathrm i k 2^{-m-3} y} \right) \,\mathrm d y\\&= \frac{\widehat{f}(k 2^{-m-3}) + \widehat{f}(-k 2^{-m-3})}{2^{m+2} \sqrt{2}}, \end{aligned}$$

where

$$\begin{aligned} \widehat{f}(h)=\int _0^1 f(x) \, \mathrm e ^{-2\pi \mathrm i h x} \,\mathrm d x \end{aligned}$$

denotes the Fourier transform of \(f\). Since, by definition, \(f^{(\tau )}(0) = f^{(\tau )}(1) = 0\) for all \(0 \le \tau \le a\), and \(f\) is \(a\)-times differentiable, repeated integration by parts shows that for any \(m \in \mathbb N _0\) we have

$$\begin{aligned} |\widehat{f}(k 2^{-m-3})| \le C_a \min (1, (k 2^{-m-3})^{-a}), \end{aligned}$$

where the constant \(C_a > 0\) depends only on \(a\) (and \(f\)). Thus we have

$$\begin{aligned} |\widetilde{f}_{m,\cos }(k)|&\le C_a \, 2^{-m-3/2} \min (1, (k 2^{-m-3})^{-a})\\&\le C^{\prime }_a \, 2^{-m} \min (1,2^{a m} r_{a/2,1}(k)). \end{aligned}$$

This bound even holds for \(\widetilde{f}_{m,\cos }(0)\) if \(C^{\prime }_a\) is large enough. For the multivariate case we have the bound

$$\begin{aligned} |\widetilde{f}_{\mathbf{m},\cos }(\mathbf{k})|&\le C(a,s) \prod _{j=1}^s 2^{-m_j} \min (1, 2^{a m_j} r_{a/2,1}(k_j))\\&= C(a,s) \, 2^{(\alpha - 1) |\mathbf{m}|} \prod _{j=1}^s 2^{-\alpha m_j} \min (1, 2^{a m_j} r_{a/2,1}(k_j)). \end{aligned}$$

By summing \(|\widetilde{f}_{\mathbf{m},\cos }(\mathbf{k})|^2\) over all choices of \(\mathbf{m}\) where \(|\mathbf{m}| = t\) we obtain

$$\begin{aligned} \sum \limits _{\mathop {\mathbf{m}\in \mathbb{N }_0^s}\limits _{|\mathbf{m}| = t}} |\widetilde{f}_{\mathbf{m},\cos }(\mathbf{k})|^2&\le 2^{2(\alpha -1) t} C^2(a,s) \sum \limits _{\mathop {\mathbf{m}\in \mathbb{N }_0^s}\limits _{|\mathbf{m}| = t}}\prod _{j=1}^s 2^{-2\alpha m_j} \min (1, 2^{2a m_j} r_{a,1}(k_j)) \nonumber \\&\le 2^{2(\alpha -1) t} C^2(a,s) \prod _{j=1}^s \sum _{m=0}^\infty 2^{-2\alpha m} \min (1,2^{2a m} r_{a,1}(k_j)). \end{aligned}$$
(9)

The last sum can now be estimated by

$$\begin{aligned}&\sum _{m=0}^\infty 2^{-2\alpha m} \min (1,2^{2a m} r_{a,1}(k_j))\nonumber \\&\qquad \quad = \sum _{0 \le m \le (\log _2 r^{-1}_{a,1}(k_j))/2a} 2^{2(a-\alpha ) m} r_{a,1}(k_j)+ \sum _{m > (\log _2 r^{-1}_{a,1}(k_j))/2a} 2^{-2\alpha m} \nonumber \\&\qquad \quad \le \frac{r^{-1}_{a-\alpha ,1}(k_j) 2^{2(a-\alpha )}-1}{2^{2(a-\alpha )}-1} r_{a,1}(k_j) + \frac{r_{\alpha ,1}(k_j) 2^{2\alpha }}{2^{2\alpha }-1} \nonumber \\&\qquad \quad \le r_{\alpha ,1}(k_j) \left( 1 + \frac{2^{2\alpha }}{2^{2\alpha }-1}\right) \nonumber \\&\qquad \quad \le 3 \, r_{\alpha ,1}(k_j). \end{aligned}$$
(10)

Since \(2N \le 2^t < 4N\) we obtain from (9) and (10) that

$$\begin{aligned} r_{\alpha ,\varvec{\gamma },s}(\mathbf{k})\ge C_0(a,\varvec{\gamma },s) 2^{-2(\alpha - 1) t} \sum \limits _{\mathop {\mathbf{m}\in \mathbb{N }_0^s}\limits _{|\mathbf{m}| \!=\! t}} |\widetilde{f}_{\mathbf{m},\cos }(\mathbf{k})|^2\ge C_1(a,\varvec{\gamma },s) \frac{2^{2t}}{N^{2\alpha }} \sum \limits _{\mathop {\mathbf{m}\in \mathbb{N }_0^s}\limits _{|\mathbf{m}| = t}} |\widetilde{f}_{\mathbf{m},\cos }(\mathbf{k})|^2. \end{aligned}$$

Now for \(\mathbf{x}=(x_1,\ldots ,x_s)\) and \(\mathbf{y}=(y_1,\ldots ,y_s)\) and for \(\mathfrak{u }\subseteq [s]\) define

$$\begin{aligned} \mathbf{x}{\mathrm{(\pm ) }_{\mathfrak{u }}}\mathbf{y}= (z_1,\ldots ,z_s), \end{aligned}$$

where \(z_j=x_j+y_j\) if \(j \in \mathfrak{u }\) and \(z_j=x_j-y_j\) if \(j \not \in \mathfrak{u }\). Define the functions

$$\begin{aligned} F_{\mathbf{m},\mathfrak{u }}(\mathbf{y}) :=\sum _{n=0}^{N-1} w_n f_{\mathbf{m}}(\mathbf{x}_n{\mathrm{(\pm ) }_{\mathfrak{u }}}\mathbf{y}), \qquad F_{\mathbf{m}}(\mathbf{y}):=\frac{1}{2^s} \sum _{\mathfrak{u }\subseteq [s]} F_{\mathbf{m},\mathfrak{u }}(\mathbf{y}), \end{aligned}$$

and the sets

$$\begin{aligned} B_{\mathbf{m},\mathfrak{u }}&:= \left\{ \mathbf{y}\in [0,1]^s: F_{\mathbf{m},\mathfrak{u }}(\mathbf{y}) = 0 \right\} ,\\ B_{\mathbf{m}}&:= \left\{ \mathbf{y}\in [0,1]^s: F_{\mathbf{m},\mathfrak{u }}(\mathbf{y}) = 0 \text{ for } \text{ all } \mathfrak{u }\subseteq [s] \right\} =\bigcap _{\mathfrak{u }\subseteq [s]} B_{\mathbf{m},\mathfrak{u }}. \end{aligned}$$

Denote with \(B_{\mathbf{m},\mathfrak{u }}^{c}\) the complement with respect to \([0,1]^s\). Then for \(\lambda _s\) the \(s\)-dimensional Lebesgue measure we have \(\lambda _s({{\mathrm{supp}}}(F_{\mathbf{m},\mathfrak{u }})) = \lambda _s(B_{\mathbf{m},\mathfrak{u }}^c)\). Since \({{\mathrm{supp}}}(f_{\mathbf{m}}(\mathbf{x}_n {\mathrm{(\pm ) }_{\mathfrak{u }}}\mathbf{y}))\) as a function of \(\mathbf{y}\) is contained in the interval \(\prod _{j \in \mathfrak{u }}(-x_{j,n},-x_{j,n}+2^{-m_j-2}) \prod _{j \in [s] \setminus \mathfrak{u }} (x_{j,n} - 2^{-m_j-2}, x_{j,n})\) we have

$$\begin{aligned} {{\mathrm{supp}}}(F_{\mathbf{m},\mathfrak{u }})\subseteq \bigcup _{n=0}^{N-1}\prod _{j \in \mathfrak{u }}\left( -x_{j,n},-x_{j,n}+2^{-m_j-2}\right) \prod _{j \in [s]\setminus \mathfrak{u }} (x_{j,n} - 2^{-m_j-2}, x_{j,n}). \end{aligned}$$

Thus \(\lambda _s({{\mathrm{supp}}}(F_{\mathbf{m},\mathfrak{u }})) = \lambda _s(B_{\mathbf{m},\mathfrak{u }}^c) \le N 2^{-|\mathbf{m}|-2s}\). Now, for all \(\mathbf{m}\) satisfying \(|\mathbf{m}|=t\) we obtain

$$\begin{aligned} \lambda _s(B_{\mathbf{m}})&=1 - \lambda _s(B_{\mathbf{m}}^c) \nonumber \\&=1 - \lambda _s\left( \bigcup _{\mathfrak{u }\subseteq [s]} B_{\mathbf{m},\mathfrak{u }}^c \right) \ge 1 - \sum _{\mathfrak{u }\subseteq [s]} N 2^{-|\mathbf{m}|-2s}=1 - \frac{N}{2^{|\mathbf{m}|+s}}>1/2, \end{aligned}$$

since \(2 N \le 2^t < 4N\).

We can expand \(F_{\mathbf{m}}(\mathbf{y}) - \int _{[0,1]^s} F_{\mathbf{m}}(\mathbf{y}) \,\mathrm{d}{\mathbf{y}}\) in terms of the coefficients \(\widetilde{f}_{\mathbf{m},\cos }(\mathbf{k})\):

$$\begin{aligned}&\frac{1}{2^s} \sum _{\mathfrak{u }\subseteq [s]}\sum _{n=0}^{N-1} w_n f_{\mathbf{m}}(\mathbf{x}_n {\mathrm{(\pm ) }_{\mathfrak{u }}}\mathbf{y}) - \widetilde{f}_{\mathbf{m},\cos }(\varvec{0}) \beta \\&\quad \!=\! \!\sum _{n=0}^{N-1} w_n \!\!\sum _{\mathbf{k}\in \mathbb{N }_0^s \!\setminus \{\varvec{0}\}} \widetilde{f}_{\mathbf{m},\cos }(\mathbf{k}) \!\frac{(\sqrt{2})^{|\mathbf{k}|_0}}{2^s} \!\!\sum _{\mathfrak{u }\subseteq [s]} \prod _{j\in \mathfrak{u }} \cos (\pi k_j (x_{j,n} \!+\! y_j)) \!\!\!\!\prod _{j\in [s]\!\setminus \mathfrak{u }} \cos (\pi k_j (x_{j,n} \!-\! y_j)) \\&\quad =\!\! \sum _{n=0}^{N-1} w_n \!\sum _{\mathbf{k}\in \mathbb{N }_0^s \!\setminus \{\varvec{0}\}} \widetilde{f}_{\mathbf{m},\cos }(\mathbf{k}) (\sqrt{2})^{|\mathbf{k}|_0} \prod _{j=1}^s \!\frac{\cos (\pi k_j(x_{j,n}-y_j))\!+\!\cos (\pi k_j (x_{j,n}\!+\!y_j))}{2}\\&\quad = \sum _{n=0}^{N-1} w_n \sum _{\mathbf{k}\in \mathbb{N }_0^s \setminus \{\varvec{0}\}} \widetilde{f}_{\mathbf{m},\cos }(\mathbf{k}) (\sqrt{2})^{|\mathbf{k}|_0} \prod _{j=1}^s (\cos (\pi k_j x_{j,n}) \cos (\pi k_j y_j))\\&\quad = \sum _{\mathbf{k}\in \mathbb{N }_0^s \setminus \{\varvec{0}\}} \widetilde{f}_{\mathbf{m},\cos }(\mathbf{k}) (\sqrt{2})^{|\mathbf{k}|_0} \left( \sum _{n=0}^{N-1} w_n \prod _{j=1}^s \cos (\pi k_j x_{j,n})\right) \prod _{j=1}^s \cos (\pi k_j y_j). \end{aligned}$$

Thus, by definition of \(B_{\mathbf{m}}\), we have

$$\begin{aligned} \lambda _s(B_{\mathbf{m}}) |\widetilde{f}_{\mathbf{m},\cos }(\varvec{0})|^2 \beta ^2&= \int _{B_{\mathbf{m}}} \left( \frac{1}{2^s} \sum _{\mathfrak{u }\subseteq [s]}\sum _{n=0}^{N-1} w_n f_{\mathbf{m}}(\mathbf{x}_n {\mathrm{(\pm ) }_{\mathfrak{u }}}\mathbf{y}) - \widetilde{f}_{\mathbf{m},\cos }(\varvec{0}) \beta \right) ^2 \,\mathrm d \mathbf{y}\\&\le \int _{[0,1]^s} \left( \frac{1}{2^s} \sum _{\mathfrak{u }\subseteq [s]}\sum _{n=0}^{N-1} w_n f_{\mathbf{m}}(\mathbf{x}_n {\mathrm{(\pm ) }_{\mathfrak{u }}}\mathbf{y}) - \widetilde{f}_{\mathbf{m},\cos }(\varvec{0}) \beta \right) ^2 \,\mathrm d \mathbf{y}\\&= \sum _{\mathbf{k}\in \mathbb N _0^s \setminus \{\varvec{0}\}} |\widetilde{f}_{\mathbf{m},\cos }(\mathbf{k})|^2 \, \left( \sum _{n=0}^{N-1} w_n \prod _{j=1}^s \cos (\pi k_j x_{j,n}) \right) ^2. \end{aligned}$$

We are now ready to piece this all together to obtain

$$\begin{aligned}&e^2(\mathcal H (K^{\cos }_{\alpha ,\varvec{\gamma },s}); P; \mathbf{w})=(1-\beta )^2 + \sum _{\mathbf{k}\in \mathbb N _0^s \setminus \{\varvec{0}\}} r_{\alpha ,\varvec{\gamma },s}(\mathbf{k}) \, 2^{|\mathbf{k}|_0} \left( \sum _{n=0}^{N-1} w_n \prod _{j=1}^s \cos (\pi k_j x_{j,n}) \right) ^2\\&\quad \ge (1-\beta )^2 + C_1(a,\varvec{\gamma },s) \frac{2^{2t}}{N^{2\alpha }} \sum \limits _{\mathop {\mathbf{m}\in \mathbb{N }_0^s}\limits _{|\mathbf{m}| = t}} \sum _{\mathbf{k}\in \mathbb N _0^s \setminus \{\varvec{0}\}} |\widetilde{f}_{\mathbf{m},\cos }(\mathbf{k})|^2 \, 2^{|\mathbf{k}|_0} \left( \sum _{n=0}^{N-1} w_n \prod _{j=1}^s \cos (\pi k_j x_{j,n}) \right) ^2\\&\quad \ge (1-\beta )^2 + C_1(a,\varvec{\gamma },s) \frac{2^{2t}}{N^{2\alpha }} \sum \limits _{\mathop {\mathbf{m}\in \mathbb{N }_0^s}\limits _{|\mathbf{m}| = t}}\lambda _s(B_{\mathbf{m}}) |\widetilde{f}_{\mathbf{m},\cos }(\varvec{0})|^2 \beta ^2\\&\quad \ge (1-\beta )^2 + C_2(a,\varvec{\gamma },s) \beta ^2 \left( I(f)\right) ^{2s} \frac{2^{2 t}}{N^{2\alpha }} 2^{-2t-4s} \sum \limits _{\mathop {\mathbf{m}\in \mathbb{N }_0^s}\limits _{|\mathbf{m}| = t}} 1\\&\quad \ge (1-\beta )^2 + C_3(\alpha ,\varvec{\gamma },s) \beta ^2 N^{-2\alpha } {t+s-1 \atopwithdelims ()s-1}. \end{aligned}$$

Set \(A := C_3(a,\varvec{\gamma },s) N^{-2\alpha } {t+s-1 \atopwithdelims ()s-1}\). Then the last expression can be written as \((1-\beta )^2 + A \beta ^2\), which satisfies

$$\begin{aligned} e^2(\mathcal H (K^{\cos }_{\alpha ,\varvec{\gamma },s}); P; \mathbf{w}) \!\ge \! (1\!-\!\beta )^2 \!+\! A \beta ^2 \!\ge \! \frac{\min (1,A)}{2} \!\ge \! C_4(\alpha ,\varvec{\gamma },s) N^{-2\alpha } {t\!+\!s\!-\!1 \atopwithdelims ()s\!-\!1}, \end{aligned}$$

which implies the result, since \(t \ge \log _2(N)\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dick, J., Nuyens, D. & Pillichshammer, F. Lattice rules for nonperiodic smooth integrands. Numer. Math. 126, 259–291 (2014). https://doi.org/10.1007/s00211-013-0566-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0566-0

Mathematics Subject Classification

Navigation