[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Sensitivity of eigenvalues of an unsymmetric tridiagonal matrix

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Several relative eigenvalue condition numbers that exploit tridiagonal form are derived. Some of them use triangular factorizations instead of the matrix entries and so they shed light on when eigenvalues are less sensitive to perturbations of factored forms than to perturbations of the matrix entries. A novel empirical condition number is used to show when perturbations are so large that the eigenvalue response is not linear. Some interesting examples are examined in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bini D.A., Gemignani L., Tisseur F.: The Ehrlich–Aberth method for the nonsymmetric tridiagonal eigenvalue problem. SIAM J. Matrix Anal. Appl. 27(1), 153–175 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Clement P.A.: A class of triple-diagonal matrices for test purposes. SIAM Rev. 1, 50–52 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ferreira C., Parlett B.: Convergence of LR algorithm for a one-point spectrum tridiagonal matrix. Numer. Math. 113(3), 417–431 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Golub G.H., Van Loan C.F.: Matrix Computations, 3rd edn. John Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  5. Higham N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Book  MATH  Google Scholar 

  6. Higham D.J., Higham N.J.: Structured backward error and condition of generalized eigenvalue problems. SIAM J. Matrix Anal. Appl. 20, 493–512 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ipsen, I.C.F.: Relative perturbation results for matrix eigenvalues and singular values. Acta Numer. 151–201 (1998)

  8. Karow M., Kressner D., Tisseur F.: Structured eigenvalue condition numbers. SIAM J. Matrix Anal. Appl. 28(4), 1052–1068 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lenferink H.W.J., Spijker M.N: On the use of stability regions in the numerical analysis of initial value problems. Math. Comput. 57(195), 221–237 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li R.-C.: Relative perturbation theory. III. More bounds on eigenvalue variations. Linear Algebra Appl. 266, 337–345 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, Z.S.: On the extended HR algorithm. Technical Report PAM-564, Center for Pure and Applied Mathematics, University of California, Berkeley (1992)

  12. Noschese S., Pasquini L.: Eigenvalue condition numbers: zero-structured versus traditional. J. Comput. Appl. Math. 185, 174–189 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Parlett B.N.: Spectral sensitivity of products of bidiagonals. Linear Algebra Appl. 275(276), 417–431 (1998)

    Article  MathSciNet  Google Scholar 

  14. Parlett B.N., Reinsch C.: Balancing a matrix for calculation of Eigenvalues and Eigenvectors. Numer. Math. 13, 292–304 (1969)

    Article  MathSciNet  Google Scholar 

  15. Pasquini L.: Accurate computation of the zeros of the generalized Bessel polynomials. Numer. Math. 86, 507–538 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rice J.: A theory of condition. SIAM J. Numer. Anal. 3(2), 287–310 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  17. Slemons, J.: Toward the solution of the eigenproblem: nonsymmetric tridiagonal matrices. Ph.D thesis. University of Washington, Seattle (2008)

  18. Stewart G.W., Sun J.: Matrix Perturbation Theory. Academic Press INC, Boston (1990)

    MATH  Google Scholar 

  19. Wilkinson J.H: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1965)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Ferreira.

Additional information

C. Ferreira is supported by FEDER Funds through “Programa Operacional Factores de Competitividade: COMPETE” and by Portuguese Funds through FCT: “Fundação para a Ciência e a Tecnologia”, within the Project PEst-C/MAT/UI0013/2011. The research of F. Dopico was partially supported by the Ministerio de Ciencia e Innovación of Spain through the research grant MTM-2009-09281.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, C., Parlett, B. & Dopico, F.M. Sensitivity of eigenvalues of an unsymmetric tridiagonal matrix. Numer. Math. 122, 527–555 (2012). https://doi.org/10.1007/s00211-012-0470-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0470-z

Mathematics Subject Classification

Navigation