[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Optimality of the fully discrete filtered backprojection algorithm for tomographic inversion

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Although the filtered backprojection algorithm (FBA) has been the standard reconstruction algorithm in 2D computerized tomography for more than 30 years, its convergence behavior is not completely settled so far. Relying on convergence results by Rieder and Faridani for the semi-discrete FBA [SIAM J. Numer. Anal., 41(3), 869–892, 2003], we show optimality of the fully discrete version for reconstructing sufficiently smooth density distributions. Further, we introduce MFBA, a modified version of FBA, and prove its optimality under weaker smoothness requirements. Remarkably MFBA may have a larger convergence order in the angular than in the lateral variable, thus allowing optimal convergence in case of angular under- sampling. Moreover, MFBA can be seen as a limit of the phantom view method introduced to increase angular resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin J.-P. (2000). Applied Functional Analysis, Pure & Applied Mathematics. Wiley, New York

    Google Scholar 

  2. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, vol. 15 of Texts in Applied Mathematics. Springer, New York (1994)

  3. Galigekere R.R., Wiesent K. and Holdsworth D.W. (1999). Techniques to alleviate the effects of view aliasing artifacts in computed tomography. Med. Phys. 26: 896–904

    Article  Google Scholar 

  4. Giusti E. (1984). Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Basel

    MATH  Google Scholar 

  5. Kress, R.: Numerical Analysis, vol. 181 of Graduate Texts in Mathematics. Springer, New York (1998)

  6. Lewitt R.M., Bates R.H.T. and Peters T.M. (1978). Image reconstruction from projections II: Modified backprojection methods. Optik 50: 85–109

    Google Scholar 

  7. Lions J.L. and Magenes E. (1972). Non-Homogeneous Boundary Value Problems and Applications, Vol. 1. Springer, New York

    Google Scholar 

  8. Louis A.K. and Natterer F. (1983). Mathematical problems in computerized tomography. Proc. IEEE 71: 379–389

    Google Scholar 

  9. Natterer, F.: Genauigkeitsfragen bei der numerischen Rekonstruktion von Bildern, vol. 49 of International series of numerical mathematics (ISNM), Birkhäuser Verlag, Basel, Switzerland, pp. 131–146 (1979)

  10. Natterer F. (1980). A Sobolev space analysis of picture reconstruction. SIAM J. Appl. Math. 39: 402–411

    Article  MATH  MathSciNet  Google Scholar 

  11. Natterer F. (1986). The Mathematics of Computerized Tomography. Wiley, Chichester

    MATH  Google Scholar 

  12. Rieder A. and Faridani A. (2003). The semi-discrete filtered backprojection algorithm is optimal for tomographic inversion. SIAM J. Numer. Anal. 41: 869–892

    Article  MATH  MathSciNet  Google Scholar 

  13. Rieder A. and Schuster Th. (2000). The approximate inverse in action with an application to computerized tomography. SIAM J. Numer. Anal. 37: 1909–1929

    Article  MATH  MathSciNet  Google Scholar 

  14. Schneck, A.: Konvergenz von Rekonstruktionsalgorithmen in der 2D-Tomographie: Der voll-diskrete Fall (Convergence of reconstruction algorithms in 2D-tomography: The fully discrete case). Diploma thesis, Fakultät für Mathematik, Universität Karlsruhe, D-76128 Karlsruhe, Germany (2006)

  15. Shepp L.A. and Logan B.F. (1974). The Fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. 21: 21–43

    Article  Google Scholar 

  16. Smithey D.T., Beck M., Raymer M.G. and Faridani A. (1993). Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum. Phys. Rev. Lett. 70: 1244–1247

    Article  Google Scholar 

  17. Weiss G.H., Talbert A.J. and Brooks R.A. (1982). The use of phantom views to reduce CT streaks due to insufficient sampling. Phys. Med. Biol. 27: 1151–1162

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Rieder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rieder, A., Schneck, A. Optimality of the fully discrete filtered backprojection algorithm for tomographic inversion. Numer. Math. 108, 151–175 (2007). https://doi.org/10.1007/s00211-007-0109-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0109-7

Mathematics Subject Classifications (2000)

Navigation