Abstract
In this paper, we will compare the convergence properties of three basic reduction methods, by placing them in a general framework. It covers the reduction to tridiagonal, semiseparable and semiseparable plus diagonal form. These reductions are often used as the first step in the computation of the eigenvalues and/or eigenvectors of arbitrary matrices. In this way, the calculation of the eigenvalues using, for example, the QR-algorithm reduces in complexity. First we will investigate the convergence properties of these three reduction algorithms. It will be shown that for the partially reduced matrices at step k of any of these reduction algorithms, the lower right k × k (already reduced) sub-block will have the Lanczos–Ritz values, w.r.t. a certain starting vector. It will also be shown that the reductions to semiseparable and to semiseparable plus diagonal form have an extra convergence behavior a special type of subspace iteration is performed on the lower right k × k submatrix, which contains these Ritz-values. Secondly we look in more detail at the behavior of the involved subspace iteration. It will be shown that the reduction method can be interpreted as a nested type of multi-shift iteration. Theoretical results will be presented, making it possible to predict the convergence behavior of these reduction algorithms. Also a theoretical bound on the convergence rate is presented. Finally we illustrate by means of numerical examples, how it is possible to tune the convergence behavior such that it can become a powerful tool for certain applications.
Similar content being viewed by others
References
Bini, D.A., Gemignani, L., Pan, V.Y.: QR-like algorithms for generalized semiseparable matrices. Technical Report 1470, Department of Mathematics, University of Pisa, 2004
Borges, C.F., Gragg, W.B.: Divide and conquer for generalized real symmetric definite tridiagonal eigenproblems. In: Proceedings of the Shanghai International Conference on Numerical Linear Algebra and Applications, pp. 70–76, Shanghai, October 1992
Chandrasekaran S., Gu M. (2004). A divide and conquer algorithm for the eigendecomposition of symmetric block-diagonal plus semi-separable matrices. Numer. Math. 96(4):723–731
Cuppen J.J.M. (1981). A divide and conquer method for the symmetric tridiagonal eigenproblem. Numer. Math. 36, 177–195
Demmel, J.W.: Applied Numerical Linear Algebra. SIAM (1997)
Eidelman Y., Gohberg I.C., Olshevsky V. (2005). The QR iteration method for Hermitian quasiseparable matrices of an arbitrary order. Linear Algebr. Appl. 404, 305–324
Golub, G.H., Van Loan, C.F.: Matrix Computations. The Johns Hopkins University Press, 3rd edition (1996)
Mastronardi, N., Schuermans, M., Van Barel, M., Van Huffel, S., Vandebril, R.: The Lanczos reduction to semiseparable matrices. In: Proceedings of the 17th IMACS World Congress on Scientific Computation, Applied Mathematics and Simulation, pp. 1–6, July 2005
Mastronardi, N., Van Barel, M., Vandebril, R.: Computing the rank revealing factorization by the semiseparable reduction. Technical Report TW418, Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3000 Leuven (Heverlee), Belgium, May 2005
Mastronardi N., Van Barel M., Van Camp E. (2005). Divide and conquer algorithms for computing the eigendecomposition of symmetric diagonal-plus-semiseparable matrices. Numer. Algorithms 39(4):379–398
Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM (1997)
Van Barel M., Vandebril R., Mastronardi N. (2005). An orthogonal similarity reduction of a matrix into semiseparable form. SIAM J. Matrix Anal. Appl. 27(1):176–197
Van Camp, E.: Diagonal-plus-semiseparable matrices and their use in numerical linear algebra. Ph.D. thesis, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Heverlee (Leuven), Belgium, May 2005
Van Camp, E., Van Barel, M., Vandebril, R., Mastronardi, N.: An implicit QR-algorithm for symmetric diagonal-plus-semiseparable matrices. Technical Report TW419, Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3000 Leuven (Heverlee), Belgium, March 2005
Vandebril, R., Van Barel, M.: Necessary and sufficient conditions for orthogonal similarity transformations to obtain the Ritz values. Technical Report TW396, Katholieke Universiteit Leuven, Department Computerwetenschappen, Celestijnenlaan 200A, 3001 Heverlee (Leuven), Belgium, July 2004
Vandebril, R., Van Barel, M., Mastronardi, N.: An implicit QR-algorithm for semiseparable matrices to compute the eigendecomposition of symmetric matrices. Technical Report TW367, Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3000 Leuven (Heverlee), Belgium, August 2003
Vandebril, R., Van Camp, E., Van Barel, M., Mastronardi, N.: Orthogonal similarity transformation of a symmetric matrix into a diagonal-plus-semiseparable one with free choice of the diagonal. Technical Report TW398, Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3000 Leuven (Heverlee), Belgium (2004)
Vandebril R., Van Barel M., Mastronardi N. (2005). A note on the representation and definition of semiseparable matrices. Numer. Linear Algebr. Appl. 12(8):839–858
Vandebril R., Van Barel M., Mastronardi N. (2005). An implicit QR-algorithm for symmetric semiseparable matrices. Numer. Linear Algebr. Appl. 12(7):625–658
Watkins D.S. (1996). QR-like algorithms an overview of convergence theory and practice. Lect. Appl. Math. 32, 879–893
Watkins D.S., Elsner L. (1991). Convergence of algorithms of decomposition type for the eigenvalue problem. Linear Algebr. Appl. 143, 19–47
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vandebril, R., Camp, E.V., Van Barel, M. et al. On the convergence properties of the orthogonal similarity transformations to tridiagonal and semiseparable (plus diagonal) form. Numer. Math. 104, 205–239 (2006). https://doi.org/10.1007/s00211-006-0017-2
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-006-0017-2
Keywords
- Orthogonal similarity reductions
- Tridiagonal
- Semiseparable
- Semiseparable plus diagonal
- Lanczos-Ritz values
- Multi-shift
- Subspace iteration