[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary.

We study the numerical approximation of viscosity solutions for integro-differential, possibly degenerate, parabolic problems. Similar models arise in option pricing, to generalize the celebrated Black–Scholes equation, when the processes which generate the underlying stock returns may contain both a continuous part and jumps. Convergence is proven for monotone schemes and numerical tests are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ait-Sahalia, Y., Wang, Y., Yared, F.: Do option markets correctly price the probabilities of movements of the underlying asset?. Working paper, Univ. of Chicago, 1998

  2. Alvarez, O., Tourin, A.: Viscosity solutions of nonlinear integro-differential equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 13(3), 293–317 (1996)

    MATH  Google Scholar 

  3. Amadori, A.L.: Differential And Integro–Differential Nonlinear Equations of Degenerate Parabolic Type Arising in the Pricing of Derivatives in Incomplete Markets. Ph.D. Thesis, Università di Roma “La Sapienza”, 2000

  4. Amadori, A.L.: Nonlinear integro-differential evolution problems arising in option pricing: a viscosity solutions approach. J. Differential and Integral Equations 16(7), 787–811 (2003)

    MATH  Google Scholar 

  5. Amadori, A.L.: The obstacle problem for nonlinear integro–differential operators arising in option pricing Quaderno IAC, Q21-000, (2000)

  6. Andersen, L., Andreasen, J.: Jump-Diffusion Processes: volatility smile fitting and numerical methods for pricing. Rev. Derivative Res. 4, 231–262 (2000)

    Article  Google Scholar 

  7. Andersen, L., Benzoni, L., Lund, J.: Estimating jump–diffusions for equity returns. Working paper, Northweterns Univ. and Aarhus School of Business, 1999

  8. Attari, M.: Discontinuous interest rate processes: an equilibrium model of bond option prices. Working paper, Univ. Madison (Winsconsin), 1997

  9. Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal 4(3), 271–283 (1991)

    MATH  Google Scholar 

  10. Bates, D.: Jumps and stochastic volatility: exchange rate processes implicit in Deutsch mark options. Review of financial studies 9, 69–107 (1996)

    Article  MATH  Google Scholar 

  11. Black, F., Scholes, M.: The pricing of option and corporate liabilities. J. Political Econom. 72, 637–659 (1973)

    Article  Google Scholar 

  12. Björk, T.: Arbitrage Theory in Continuous Time. Oxford: Oxford University Press, 1998

  13. Bjork, T., Kabanov, Y., Runggaldier, W.: Bond market structure in the presence of marked point processes. Math. Finance 7(2), 211–239 (1997)

    Article  Google Scholar 

  14. Burneta, A.N., Ritchken, P.: On rational jump-diffusion models in the Flesaker-Hughston paradigm, Working paper, Case western reserves University, 1996

  15. Crandall, M.G., Ishi, H., Lions, P.L.: Users’ guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc., (New Ser.) 27(1), 1–67 (1992)

    Google Scholar 

  16. Crandall, M.G., Lions, P.L.: Two approximations of solutions of Hamilton-Jacobi equations. Math. Comput. 43(167), 1–19 (1994)

    MATH  Google Scholar 

  17. Das, S., Foresi, S.: Exact solutions for bond and option prices with systematic jump risk. J. Financ. Quantitative Anal. 34, 211–240 (1999)

    Google Scholar 

  18. Das, S.R.: The surprise element: jumps in interest rates. J. Econometrics 106(1), 27–65 (2002)

    Article  MATH  Google Scholar 

  19. Davis, P.J., Rabinowitz, P.: Methods of numerical integration. Academic Press, Inc. (1975)

  20. Duffie, D., Pan, J., Singleton, K.: Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68(6), 1343–1376 (2000)

    Article  MATH  Google Scholar 

  21. Garroni, M.G., Menaldi, J.L.: Green functions for second order parabolic integro-differential problems. Pitman Res. Notes Math. Ser. (1992)

  22. Garroni, M.G., Menaldi, J.L.: Regularizing effect for integro-differential parabolic equations. Commun. Partial Differential Equations 18(12), 2023–2025 (1993)

    MATH  Google Scholar 

  23. Garroni, M.G., Menaldi, J.L.: Maximum principle for integro-differential parabolic operators. Differ. Integral Equ. 8(1), 161–182 (1995)

    MATH  Google Scholar 

  24. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jarrow, R., Madan, D.: Option pricing using the term structure of interest rates to hedge systematic discontinuities in asset returns. Math. Finance 5(4), 311–336 (1995)

    MATH  Google Scholar 

  26. Karlsen, K.H., Risebro, N.H.: An operator splitting method for nonlinear convection-diffusion equations. Numer. Math. 77(3), 365–382 (1997)

    Article  MATH  Google Scholar 

  27. Kou, S.G.: A jump diffusion model for option pricing. Management Science 48, 1086–1101 (2002)

    Article  Google Scholar 

  28. Kurganov, A., Tadmor, E.: New High-Resolution Semi-Discrete Central Schemes for Hamilton-Jacobi Equations. J. Comput. Phys. 160(2), 720–742 (2000)

    Article  MATH  Google Scholar 

  29. Lin, C.-T., Tadmor, E.: High-resolution non-oscillatory central scheme for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21, 2163–2186 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. Magill, M., Quinzii, M.: Theory of incomplete markets. vol. 1 – MIT Press, 1996

  31. Merton, R.C.: Option pricing when the underlying stocks returns are discontinuous. J. Financ. Econ. 5, 125–144 (1976)

    Article  Google Scholar 

  32. Osher, S., Shu, C.-W.: High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28(4), 907–922 (1991)

    MATH  Google Scholar 

  33. Page, F.H., Sanders, A.B.: A general derivation of the jump process option pricing formula. J. Financial and Quantitative Anal. 21, 437–446 (1986)

    Google Scholar 

  34. Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations. Chapman & Hall, New York

  35. Tavella, D., Randall, C.: Pricing financial instruments - the finite difference method. John Wiley & Sons, Inc. 2000

  36. Yong, J., Zhou, X.Y.: Stochastic controls. Hamiltonian systems and HJB equations. Applications of Mathematics, 43. New York: Springer-Verlag, 1999

Download references

Acknowledgments.

The first two authors would like to thank the whole staff of IAC-CNR for their kind hospitality during the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Natalini.

Additional information

Mathematics Subject Classification (1991): 65M12, 35K55, 49L25

Revised version received February 13, 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briani, M., Chioma, C. & Natalini, R. Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory. Numer. Math. 98, 607–646 (2004). https://doi.org/10.1007/s00211-004-0530-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-004-0530-0

Keywords

Navigation