Abstract
It is well known, that pseudodifferential equations of negative order considered in Sobolev spaces with small smoothness indices are ill–posed. On the other hand, it is known that efficient discretization schemes with properly chosen discretization parameters allow to obtain a regularization effect for such equations. The main accomplishment of the present paper is the principle for the adaptive choice of the discretization parameters directly from noisy discrete data. We argue that the combination of this principle with wavelet–based matrix compression techniques leads to algorithms which are order–optimal in the sense of complexity.
Similar content being viewed by others
References
Atkinson, K.E.: A discrete Galerkin method for first kind integral equations with a logarithmic kernel. J. Integral. Equations Appl. 1, 343–363 (1988)
Bakushinskii, A.B.: Remarks on choosing a regularization parameter using the quasi–optimality and ratio criterion. USSR Comput. Math. and Math. Phys. 24, 181–182 (1984)
Bruckner, G., Prössdorf, S., Vainikko, G.: Error bounds of discretization methods for boundary integral equations with noisy data. Appl. Analysis 63, 25–37 (1996)
Cohen, A., Dahmen, W., DeVore, R.: Adaptive Wavelet Methods for elliptic operator equations. Convergence Rates, Preprint, RWTH Aachen, 1998
Dahmen, W.: Stability of multiscale transformations, The Journal of Fourier Analysis and Applications 2, 341–361 (1996)
Dahmen, W.: Wavelet and multiscale methods for operator equations. Acta Numerica 6, 55–228 (1997)
Dahmen, W., Prössdorf, S., Schneider, R.: Multiscale methods for pseudo–differential equations on smooth closed manifolds. In: Proceedings of the International Conference on Wavelets: Theory, Algorithms and Applications, C.K. Chui, L. Mentefusco, L. Puccio (eds.), Academic Press, 385–424, (1994)
Dahmen, W., Prössdorf, S., Schneider, R.: Multiscale methods for pseudodifferential equations. In: Recent Advances in Wavelet Analysis, L. L. Schumacher, G. Webb (eds.). Academic Press, 191–235, (1994)
DeVore, R.: Nonlinear approximation, Acta Numerica 7, 51–150 (1998)
Dicken, V., Maaß, R.: Wavelet–Galerkin–methods for ill–posed problems, J. Inverse Ill–Posed Probl. 4, 203–221 (1996)
Donoho, D.L.: Nonlinear solution of linear inverse problems by wavelet- vaguelette decomposition. Appl. Comput. Harm. Analysis 2, 101–126 (1995)
Goldenshluger, A., Pereverzev, S.V.: Adaptive estimation of linear functionals in Hilbert scales from indirect white noise observations. Probab. Theory Relat. Fields. 118, 169–186 (2000)
Hansen, P.C.: Analysis of discrete ill–posed problems by means of the L–curve. SIAM Review 34, 561–580 (1992)
Kaltenbacher, B.: Regularization by projection with a posteriori discretization level choice for linear and nonlinear ill–posed problems. Inverse Problems 16, 137–155 (2000)
Lepskii, O.: A problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl. 36, 454–466 (1990)
Mathe, P., Pereverzev, S.V.: Optimal discretization of inverse problems in Hilbert scales. Regularization and self–regularization of projection methods. SIAM J. Numer. Anal. 38, 1999–2001 (2001)
McLean, W.: A spectral Galerkin method for a boundary integral equations. Math. Comput. 47, 597–607 (1986)
Natterer, F.: Regularisation schlecht gestellter Probleme durch Projektionsverfahren. Numer. Math. 28, 329–341 (1997)
Natterer, F.: Error bounds for Tikhonov regularization in Hilbert scales. Appl. Anal. 19, 29–37 (1984)
Novak, E.: On the power of adaptation, J. Complexity, 12, 199–237 (1996)
Pereverzev, S.V.: Prössdorf, S., On the characterization of self–regularization properties of a fully discrete projection methods for Symm's integral equation. J. Integral. Equations Appl. 12, 113–130 (2000)
Pinkus, A.: n–Widths in Approximation Theory. New York: Springer–Verlag, 1985
Saranen, J., Schroderus, L.: Quadrature methods for strongly elliptic equations of negative order on smooth closed curves. SIAM J. Numer. Anal. 30, 1769–1795 (1993)
Schneider, R.: Multiskalen– und Wavelet–Matrixkompression: Analysisbasierte Methoden zur Lösung grosser vollbesetzter Gleichungssysteme. B.G. Teubner, Stuttgart, 1998
Traub, J.F., Wasilkowski, G.W., Wozniakowski, H.: Information–based complexity. Academic Press, Boston, 1988
Vainikko, G.M., Hämarik, U.A.: Projection methods and self–regularization of ill–posed problems. Iz. VUZ. Mat. 29, 1–17 (1985)
Yan, Y., Sloan, I.H.: On integral equations of the first kind with logarithmic kernels. J. Integral Equations. Appl. 1, 549–579 (1988)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Harbrecht, H., Pereverzev, S. & Schneider, R. Self–regularization by projection for noisy pseudodifferential equations of negative order. Numer. Math. 95, 123–143 (2003). https://doi.org/10.1007/s00211-002-0417-x
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-002-0417-x