[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Metabolomics reveals insect metabolic responses associated with fungal infection

  • Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The interactions between insects and pathogenic fungi are complex. We employed metabolomic techniques to profile insect metabolic dynamics upon infection by the pathogenic fungus Beauveria bassiana. Silkworm larvae were infected with fungal spores and microscopic observations demonstrated that the exhaustion of insect hemocytes was coupled with fungal propagation in the insect body cavity. Metabolomic analyses revealed that fungal infection could significantly alter insect energy and nutrient metabolisms as well as the immune defense responses, including the upregulation of carbohydrates, amino acids, fatty acids, and lipids, but the downregulation of eicosanoids and amines. The insect antifeedant effect of the fungal infection was evident with the reduced level of maclurin (a component of mulberry leaves) in infected insects but elevated accumulations in control insects. Insecticidal and cytotoxic mycotoxins like oosporein and beauveriolides were also detected in insects at the later stages of infection. Taken together, the metabolomics data suggest that insect immune responses are energy-cost reactions and the strategies of nutrient deprivation, inhibition of host immune responses, and toxin production would be jointly employed by the fungus to kill insects. The data obtained in this study will facilitate future functional studies of genes and pathways associated with insect–fungus interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pujol-Lereis LM, Rabossi A, Quesada-Allue LA (2012) Lipid profiles as indicators of functional senescence in the medfly. Exp Gerontol 47(6):465–472

    Article  CAS  Google Scholar 

  2. Hajek AE, Leger RJS (1994) Interactions between fungal pathogens and insect hosts. Annu Rev Entomol 39:293–322

    Article  Google Scholar 

  3. Wang C, Feng M-G (2014) Advances in fundamental and applied studies in China of fungal biocontrol agents for use against arthropod pests. Biol Control 68(1):129–135

    Article  Google Scholar 

  4. Baverstock J, Roy HE, Pell JK (2010) Entomopathogenic fungi and insect behaviour: from unsuspecting hosts to targeted vectors. BioControl 55(1):89–102

    Article  Google Scholar 

  5. Kingsolver MB, Huang Z, Hardy RW (2013) Insect antiviral innate immunity: pathways, effectors, and connections. J Mol Biol 425(24):4921–4936

    Article  CAS  Google Scholar 

  6. Thomas MB, Read AF (2007) Can fungal biopesticides control malaria? Nat Rev Microbiol 5(5):377–383. doi:10.1038/nrmicro1638

    Article  CAS  Google Scholar 

  7. Nicholson JK, Wilson ID (2003) Opinion: understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2(8):668–676. doi:10.1038/nrd1157

    Article  CAS  Google Scholar 

  8. Nicholson JK (2006) Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol 2:52. doi:10.1038/msb4100095

    Article  Google Scholar 

  9. Schmidt CW (2004) Metabolomics: what's happening downstream of DNA. Environ Health Perspect 112(7):A410–A415

    Article  Google Scholar 

  10. Aliferis KA, Copley T, Jabaji S (2012) Gas chromatography-mass spectrometry metabolite profiling of worker honey bee (Apis mellifera L.) hemolymph for the study of Nosema ceranae infection. J Insect Physiol 58(10):1349–1359

    Article  CAS  Google Scholar 

  11. de Bekker C, Smith PB, Patterson AD, Hughes DP (2013) Metabolomics reveals the heterogeneous secretome of two entomopathogenic fungi to ex vivo cultured insect tissues. PLoS ONE 8(8):e70609

    Article  Google Scholar 

  12. Wang Y, Carolan JC, Hao F, Nicholson JK, Wilkinson TL, Douglas AE (2010) Integrated metabonomic-proteomic analysis of an insect-bacterial symbiotic system. J Proteome Res 9(3):1257–1267

    Article  CAS  Google Scholar 

  13. Wang C, Fan M, Li Z, Butt TM (2004) Molecular monitoring and evaluation of the application of the insect-pathogenic fungus Beauveria bassiana in southeast China. J Appl Microbiol 96(4):861–870

    Article  CAS  Google Scholar 

  14. Duan Z, Chen Y, Huang W, Shang Y, Chen P, Wang C (2013) Linkage of autophagy to fungal development, lipid storage and virulence in Metarhizium robertsii. Autophagy 9(4):538–549

    Article  CAS  Google Scholar 

  15. Ho WE, Xu YJ, Cheng C, Peh HY, Tannenbaum SR, Wong WS, Ong CN (2014) Metabolomics reveals inflammatory-linked pulmonary metabolic alterations in a murine model of house fust mite-induced allergic asthma. J Appl Microbiol 13(8):3771–3778

    CAS  Google Scholar 

  16. Huang W, Shang Y, Chen P, Gao Q, Wang C (2014) MrpacC regulates sporulation, insect cuticle penetration and immune evasion in Metarhizium robertsii. Environ Microbiol. doi:10.1111/1462-2920.12451

    Google Scholar 

  17. Wang B, Kang Q, Lu Y, Bai L, Wang C (2012) Unveiling the biosynthetic puzzle of destruxins in Metarhizium species. Proc Natl Acad Sci U S A 109(4):1287–1292

    Article  CAS  Google Scholar 

  18. Yi HY, Chowdhury M, Huang YD, Yu XQ (2014) Insect antimicrobial peptides and their applications. Appl Microbiol Biotechnol 98(13):5807–5822

    Article  CAS  Google Scholar 

  19. Xiao X, Liu Y, Zhang X, Wang J, Li Z, Pang X, Wang P, Cheng G (2014) Complement-related proteins control the flavivirus infection of Aedes aegypti by inducing antimicrobial peptides. PLoS Pathog 10:e1004027

  20. Quesada-Moraga E, Vey A (2004) Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycol Res 108:441–452

    Article  CAS  Google Scholar 

  21. Shi H, Zeng H, Yang X, Liu Z, Qiu D (2013) An insecticidal protein from Xenorhabdus ehlersii stimulates the innate immune response in Galleria mellonella. World J Microbiol Biotechnol 29:1705–1711

    Article  CAS  Google Scholar 

  22. Berisha A, Mukherjee K, Vilcinskas A, Spengler B, Rompp A (2013) High-resolution mass spectrometry driven discovery of peptidic danger signals in insect immunity. PLoS ONE 8:e80406

    Article  Google Scholar 

  23. Beaulaton J (1979) Hemocytes and hemocytopoiesis in silkworms. Biochimie 61:157–164

    Article  CAS  Google Scholar 

  24. Harpur BA, Zayed A (2013) Accelerated evolution of innate immunity proteins in social insects: adaptive evolution or relaxed constraint? Mol Biol Evol 30(7):1665–1674

    Article  CAS  Google Scholar 

  25. Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S, Xie XQ, Shang Y, St Leger RJ, Zhao GP, Wang C, Feng MG (2012) Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2:483

    Google Scholar 

  26. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    Article  Google Scholar 

  27. Stanley D, Miller J, Tunaz H (2009) Eicosanoid actions in insect immunity. J Innate Immun 1:282–290

    Article  CAS  Google Scholar 

  28. Harizi H (2013) The immunobiology of prostanoid receptor signaling in connecting innate and adaptive immunity. BioMed Res Int 2013:683405

    Article  Google Scholar 

  29. Buyukguzel E (2012) Eicosanoids mediate cellular immune response and phenoloxidase reaction to viral infection in adult Pimpla turionellae. Arch Insect Biochem Physiol 81:20–33

    Article  Google Scholar 

  30. de Muñoz FL GG, Martínez-Barnetche J, Lanz-Mendoza H, Rodríguez MH, Hernández-Hernández FC (2008) Prostaglandin E2 modulates the expression of antimicrobial peptides in the fat body and midgut of Anopheles albimanus. Arch Insect Biochem Physiol l68(1):14–25

    Article  Google Scholar 

  31. Stanley-Samuelson DW, Jensen E, Nickerson KW, Tiebel K, Ogg CL, Howard RW (1991) Insect immune response to bacterial infection is mediated byeicosanoids. Proc Natl Acad Sci U S A 88:1064–1068

    Article  CAS  Google Scholar 

  32. Fraga A, Ribeiro L, Lobato M, Santos V, Silva JR, Gomes H, da Cunha Moraes JL, de Souza MJ, de Oliveira CJ, Campos E, da Fonseca RN (2013) Glycogen and glucose metabolism are essential for early embryonic development of the red flour beetle Tribolium castaneum. PLoS ONE 8:e65125

    Article  CAS  Google Scholar 

  33. Becker A, Schloder P, Steele JE, Wegener G (1996) The regulation of trehalose metabolism in insects. Experientia 52:433–439

    Article  CAS  Google Scholar 

  34. Behm CA (1997) The role of trehalose in the physiology of nematodes. Int J Parasitol 27:215–229

    Article  CAS  Google Scholar 

  35. Elbein AD, Pan YT, Pastuszak I, Carroll D (2003) New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R–27R

    Article  CAS  Google Scholar 

  36. Castillo JC, Reynolds SE, Eleftherianos I (2011) Insect immune responses to nematode parasites. Trends Parasitol 27:537–547

    Article  CAS  Google Scholar 

  37. Sellick CA, Campbell RN, Reece RJ (2008) Galactose metabolism in yeast-structure and regulation of the Leloir pathway enzymes and the genes encoding them. Int Rev Cell Mol Biol 269:111–150

    CAS  Google Scholar 

  38. Kushner R, Ryan E, Sefton J, Sanders R, Lucioni P, Moberg K, Fridovich-Keil JL (2010) A Drosophila melanogaster model of classic galactosemia. Dis Model Mech 3:618–627

    Article  CAS  Google Scholar 

  39. Chang LW, Juang LJ, Wang BS, Wang MY, Tai HM, Hung WJ, Chen YJ, Huang MH (2011) Antioxidant and antityrosinase activity of mulberry (Morus alba L.) twigs and root bark. Food Chem Toxicol 49:785–790

    Article  CAS  Google Scholar 

  40. Wang C, St Leger RJ (2007) A scorpion neurotoxin increases the potency of a fungal insecticide. Nat Biotechnol 25(12):1455–1456

    Article  CAS  Google Scholar 

  41. Tefera T, Pringle KL (2003) Food consumption by Chilo partellus (Lepidoptera: Pyralidae) larvae infected with Beauveria bassiana and Metarhizium anisopliae and effects of feeding natural versus artificial diets on mortality and mycosis. J Invertebr Pathol 84:220–225

    Article  Google Scholar 

  42. Favilla M, Macchia L, Gallo A, Altomare C (2006) Toxicity assessment of metabolites of fungal biocontrol agents using two different (Artemia salina and Daphnia magna) invertebrate bioassays. Food Chem Toxicol 44:1922–1931

    Article  CAS  Google Scholar 

  43. Kershaw MJ, Moorhouse ER, Bateman R, Reynolds SE, Charnley AK (1999) The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insect. J Invertebr Pathol 7:213–223

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB11030100) and the Knowledge Innovation Program of Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (2013KIP106).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengshu Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, YJ., Luo, F., Gao, Q. et al. Metabolomics reveals insect metabolic responses associated with fungal infection. Anal Bioanal Chem 407, 4815–4821 (2015). https://doi.org/10.1007/s00216-015-8648-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8648-8

Keywords