Abstract
This review deals with short peptides (up to 50 amino acids) as biomimetic active recognition elements in sensing systems. Peptide-based sensors have been developed in recent years according to different strategies. Synthetic peptides have been designed on the basis of known interactions between single or a few amino acids and targets, with attention being paid to the presence of peptide motifs known to allow intermolecular self-organization of the sensing peptides over the sensor surface. Sensitive and sophisticated sensors have been obtained in this way, but the use of designed peptides is limited by severe difficulties in their in silico design. Short peptides from random phage display have been selected in a random way from large, unfocussed, and often preexisting and commercially available phage display libraries, with no design elements. Such peptides often perform better than antibodies, but they are difficult to select when the target is a small molecule because of the need to immobilize it with considerable modifications of its structure. Artificial, miniaturized receptors have been obtained from the reduction of the known sequence of a natural receptor down to a synthesizable and yet stable one. Alternatively, binding sites have been created over a designed, stable peptide scaffold. Short peptides have also been used as active elements for the detection of their own natural receptors: pathogenic bacteria have been detected with antimicrobial and cell-penetrating peptides, but key challenges such as detection of bacteria in real samples, improved sensitivity, and improved selectivity have to be faced. Peptide substrates have been conjugated to fluorescent quantum dots to obtain disposable sensors for protease activity with high sensitivity. Ferrocene–peptide conjugates have been used for electrochemical sensing of protease activity.
Similar content being viewed by others
Abbreviations
- ACPP:
-
activatable cell-penetrating peptide
- AMP:
-
antimicrobial peptide
- CPP:
-
cell-penetrating peptide
- ELISA:
-
enzyme-linked immunosorbant assay
- Fc:
-
ferrocene
- FRET:
-
Förster resonance energy transfer
- LOD:
-
limit of detection
- MPA:
-
mercaptoproprionic acid
- PCR:
-
polymerase chain reaction
- QCM:
-
quartz crystal microbalance
- QD:
-
quantum dot
- SAM:
-
self-assembled monolayer
- SNAP-25:
-
synaptosomal-associated protein 25
- SPRI:
-
surface plasmon resonance imaging
- TAT:
-
transactivator of transcription
- TNT:
-
2,4,6-trinitrotoluene
References
Tewari AK, Dubey R (2008) Bioorg Med Chem 16:126–143
Chiari M, Cretich M, Damin F, Di Carlo G, Oldani C (2008) J Chromatogr B 866:89–103
Ariga K, Hill JP, Endo H (2007) Int J Mol Sci 8:864–883
Zarzo M (2007) Biol Rev 82:455–479
Skerra A (2007) Curr Opin Biotechnol 18(4):295–304
Chow E, Gooding JJ (2006) Electroanalysis 18(15):1437–1448
Bi X, Agarwal A, Balasubramanian N, Yang KL (2008) Electrochem Commun 10:1868–1871
Lin M, Cho M, Choe WS, Yoo JB, Lee Y (2010) Biosens Biolectron 26(2):940–945
Xu YM, Pan HQ, Wu SH, Zhang BL (2009) Chin J Anal Chem 37(6):783–787
Viguier B, Zòr K, Kasotakis E, Mitraki A, Clausen CH, Svendsen WE, Castillo-Leòn J (2011) ACS Appl Mater Interfaces 3:1594–1600
Godwin HA, Berg JM (1996) J Am Chem Soc 118(27):6514–6515
Villiers MB, Cortès S, Brakha C, Lavergne JP, Marquette CA, Deny P, Livache T, Marche PN (2010) Biosens Bioelectron 26(4):1554–1559
De La Rica R, Pejoux C, Matsui H (2011) Adv Funct Mater 21(6):1018–1026
Lu HH, Rao YK, Wu TZ, Tzeng YM (2009) Sens Actuators B Chem 137(2):741–746
Mascini M, Macagnano A, Scortichini G, Del Carlo M, Diletti G, D'Amico A, Di Natale C, Compagnone D (2005) Sens Actuators B Chem 111–112(Suppl):376–384
Nakamura C, Inuyama Y, Goto H, Obataya I, Kaneko N, Nakamura N, Santo N, Miyake J (2005) Anal Chem 77:7750–7757
Obataya I, Nakamura C, Enomoto H, Hoshino T, Nakamura N, Miyake J (2004) J Mol Catal B 28:265–271
Duchesne L, Wells G, Fernig DG, Harris SA, Lévy R (2008) Chembiochem 9(13):2127–2134
Venanzi M, Pace G, Palleschi A, Stella L, Castrucci P, Scarselli M, De Crescenzi M, Formaggio F, Toniolo C, Marletta G (2006) Surf Sci 600(2):409–416
Miura Y, Kimura S, Imanishi Y, Umemura J (1998) Langmuir 14(10):2761–2767
Pomerantz WC, Cadwell KD, Hsu Y-J, Gellman SH, Abbott NL (2007) Chem Mater 19(18):4436–4441
Lévy R (2006) Chembiochem 7(8):1141–1145
Bolduc OR, Clouthier CM, Pelletier JN, Masson JF (2009) Anal Chem 81(16):6779–6788
Lévy R, Thanh NT, Doty RC, Hussain I, Nichols RJ, Schiffrin DJ, Brust M, Fernig DG (2004) J Am Chem Soc 126(32):10076–10084
Frisk ML, Tepp WH, Johnson EA, Beebe DJ (2009) Anal Chem 81(7):2760–2767
Tseng MC, Chang YP, Chu YH (2007) Anal Biochem 371(1):1–9
Aili D, Selegård R, Enander K, Liedberg B (2009) Small 5:2445–2452
Enander K, Dolphin GT, Baltzer L (2004) J Am Chem Soc 126:4464–4465
Smith GP, Petrenko VA (1997) Chem Rev 97:391–410
Bradbury ARM (2010) Curr Protoc Neurosci 5.12.1–5.12.27
Drevelle A, Graille M, Heyd B, Sorelle I, Ulryck N, Pecorari F, Desmadril M, van Tilbeurgh H, Minard P (2006) J Mol Biol 358:455–471
Schweitzer BI, Dicker AP, Bertino JR (1990) FASEB J 4(8):2441–2452
Goldman ER, Pazirandeh MP, Charles PT, Balighian ED, Anderson GP (2002) Anal Chim Acta 457:13–19
Benedetti F, Berti F, Brady K, Colombatti A, Pauletto A, Pucillo C, Thomas NR (2004) Chembiochem 5(1):129–131
Nakamura C, Song SH, Chang SM, Sugimoto N, Miyake J (2002) Anal Chim Acta 469:183–188
Riugrok VJB, Levisson M, Eppkin MHM, Smidt H, van der Oost J (2011) Biochem J 436:1–13
Zoller F, Haberkorn U, Mier W (2011) Molecules 16(3):2467–2485
Goldman ER, Pazirandeh MP, Mauro M, King KD, Frey JC, Anderson GP (2000) J Mol Recognit 13:382–387
Paige LA, Christensen DJ, Grøn H, Norris JD, Gottlin EB, Padilla KM, Chang CY, Ballas LM, Hamilton PT, McDonnell DP, Fowlkes DM (1999) Proc Natl Acad Sci USA 96(7):3999–4004
Fechner P, Pröll F, Carlquist M, Proll G (2009) Anal Bioanal Chem 393(6–7):1579–1585
Samoylov AM, Samoylova TI, Pathirana ST, Globa LP, Vodyanoy VJ (2002) J Mol Recognit 15:197–203
Carnazza S, Foti C, Gioffrè G, Felici F, Guglielmino S (2007) Biosens Biolectron 23:1137–1144
Zhang H, Li X, Bay I, Niu R, Jia Y, Zhang C, Zhang L, Cao Y (2009) Biotechnol Appl Biochem 53(3):185–192
Huan TN, Ha VTT, Hung LQ, Yoon MY, Han SH, Chung H (2009) Biosens Bioelectron 25:469–474
Anderson GP, King KD, Gaffney KL, Johnson LH (2000) Biosens Bioelecton 14:771–778
Wu J, Cropek DM, West AC, Banta S (2010) Anal Chem 82:8235–8243
Zhu H, White IM, Suter JD, Fan X (2008) Biosens Bioelectron 24(3):461–466
Skerra A (2007) Curr Opin Biotechnol 18:259–304
Nord K, Nillson B, Nillson M, Uhlèn M, Nygren PÅ (1995) Protein Eng 8
Nord K, Gunneriusson J, Ringdahl S, Ståhl M, Uhlèn M, Nygren PÅ (1997) Nat Biotechnol 15:772–777
Renberg B, Shiroyama I, Engfeldt T, Nygren PÅ, Karlström AE (2005) Anal Biochem 341:334–343
Renberg B, Nordin J, Merca A, Uhlèn M, Feldwish J, Nygren PÅ, Karlström AE (2007) J Proteome Res 6:171–179
Gao J, Chen K, Miao Z, Ren G, Xiaoyuan C, Gambir SS, Cheng Z (2011) Biomaterials 32:2141–2148
Hou Y, Gochin M (2008) Anal Chem 80:5924–5929
Weiss-Wichert C, Valina-Saba M, Schalkhammer T (1997) J Biomol Screen 2:11–18
Albrecht C, Fechner P, Honcharenko D, Gauglitz G (2010) Biosens Bioelectron 25:2302–2308
Savoini A (2006) Italian Patent Application RM2006 A00707
Chao H, Bautista DL, Litowsky J, Irvin TR, Hodges RS (1996) J Chromatogr B Biomed Sci Appl 715:307–309
Frisk ML, Guangyun L, Johnson EA, Beebe DJ (2011) Biosens Bioelectron 26:1929–1935
Anai T, Nakata E, Koshi Y, Ojida A, Hamachi I (2007) J Am Chem Soc 129:6232–6239
Asakawa H, Mochitate K, Haruyama T (2008) Anal Chem 80:1505–1511
Sankaran S, Panigrahi S, Mallik S (2011) Biosens Bioelectron 26(7):3103–3109
Wu TZ, Lo YR, Chan EC (2001) Biosens Bioelectron 16(9–12):945–953
Sankaran S, Panigrahi S, Mallik S (2011) Sens Actuators B Chem 155(1):8–18
Kulagina NV, Lassman ME, Ligler FS, Taitt CR (2005) Anal Chem 77(19):6504–6508
Kulagina NV, Shaffer KM, Anderson GP, Ligler FS, Taitt CR (2006) Anal Chim Acta 575(1):9–15
Arcidiacono S, Pivarnik P, Mello CM, Senecal A (2008) Biosens Bioelectron 23(11):1721–1727
Kulagina NV, Shaffer KM, Ligler FS, Taitt CR (2007) Sens Actuators B Chem 121(1):150–157
Zampa MF, Araújo IM, Costa V, Nery Costa CH, Santos JR Jr, Zucolotto V, Eiras C, Leite JR (2009) Nanomedicine 5(3):352–358
Mannoor MS, Zhang S, Link AJ, McAlpine MC (2010) Proc Natl Acad Sci USA 107(45):19207–19212
Thorén PE, Persson D, Esbjörner EK, Goksör M, Lincoln P (2004) Nordén B 43(12):3471–3489
Fonseca SB, Pereira MP, Kelley SO (2009) Adv Drug Deliv Rev 61(11):953–964
Seward GK, Wei Q, Dmochowski IJ (2008) Bioconjug Chem 19(11):2129–2135
Cho Y, Ivanisevic A (2005) J Phys Chem B 109(13):6225–6232
Cho Y, Ivanisevic A (2006) Langmuir 22(4):1768–1774
Aguilera TA, Olson ES, Timmers MM, Jiang T, Tsien RY (2009) Integr Biol (Camb) 371–381
Raha S, Paunesku T, Woloschak G (2011) Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(3):269–281
Olson ES, Jiang T, Aguilera TA, Nguyen QT, Ellies LG, Scadeng M, Tsien RY (2010) Proc Natl Acad Sci USA 107(9):4311–4316
Bi X, Yang KL (2010) Biosens Bioelectron 26(1):107–111
Matayoshi ED, Wang GT, Krafft GA, Erickson J (1990) Science 247(4945):954–958
Grahn S, Ullmann D, Jakubke H (1998) Anal Biochem 265(2):225–231
Schmidt JJ, Stafford RG (2003) Appl Environ Microbiol 2069(1):297–303
Prasuhn DE, Feltz A, Blanco-Canosa JB, Susumu K, Stewart MH, Mei BC, Yakovlev AV, Loukov C, Mallet JM, Oheim M, Dawson PE, Medintz IL (2010) ACS Nano 4(9):5487–5497
Sapsford KE, Granek J, Deschamps JR, Boeneman K, Blanco-Canosa JB, Dawson PE, Susumu K, Stewart MH, Medintz IL (2011) ACS Nano 5(4):2687–2699
Sapsford KE, Farrell D, Sun S, Rasooly A, Mattoussi H, Medintz IL (2009) Sens Actuators B Chem 139(1):13–21
Kilian KA, Böcking T, Gaus K, Gal M, Gooding JJ (2007) ACS Nano (4):355–361
Liu G, Wang J, Wunschel DS, Lin YJ (2006) Am Chem Soc 128(38):12382–12383
Adjémian J, Anne A, Cauet G, Demaille C (2010) Langmuir 26(12):10347–10356
Ohtsuka K, Maekawa I, Waki M, Takenaka S (2009) Anal Biochem 385(2):293–299
Mahmoud KA, Kraatz HB (2007) Chemistry 13(20):5885–5895
Xiao H, Liu L, Meng F, Huang J, Li G (2008) Anal Chem 80(13):5272–5275
Kerman K, Mahmoud KA, Kraatz HB (2007) Chem Commun 3829–3831
Mahmoud KA, Hrapovic S, Luong JH (2008) ACS Nano 2(5):1051–1057
Ghadiali JE, Cohen BE, Stevens MM (2010) ACS Nano 4(8):4915–4919
Uri A, Lust M, Vaasa A, Lavogina D, Viht K, Enkvist E (2010) Biochim Biophys Acta 1804(3):541–546
Sullivan TP, van Poll ML, Dankers PY, Huck WT (2004) Angew Chem Int Ed 43(32):4190–4193
Cui Y, Pattabiraman A, Lisko B, Collins SC, McAlpine MC (2010) J Am Chem Soc 132(4):1204–1205
Grasso G, D'Agata R, Rizzarelli E, Spoto G, D'Andrea L, Pedone C, Picardi A, Romanelli A, Fragai M, Yeo KJ (2005) J Mass Spectrom 40(12):1565–1571
Fu J, Reinhold J, Woodbury NW (2011) PLoS One 6(4):e18692
Acknowledgements
We are grateful to the Commissariato del Governo nella Regione Friuli—Venezia Giulia (Fondo Trieste) for a grant to S.P. (Grant 597/08 “Piccoli peptidi per lo sviluppo di biosensori”). We are grateful to Chiara Carletti-Vagni for her helpful suggestions during the revision process.
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in the topical collection Biomimetic Recognition Elements for Sensing Applications with guest editor María Cruz Moreno-Bondi.
Rights and permissions
About this article
Cite this article
Pavan, S., Berti, F. Short peptides as biosensor transducers. Anal Bioanal Chem 402, 3055–3070 (2012). https://doi.org/10.1007/s00216-011-5589-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00216-011-5589-8